These Forests Are Found On The Tidal Flats Of The Coastal Areas. They Are Good Sources Of Charcoals, Firewoods And Tannin. (2023)

1. [PDF] The Importance of Mangroves to People: A Call to Action

  • These remarkable forests are of great importance to coastal communities, providing not only a source of food and resources but also protecting coastlines, ...

  • %PDF-1.7 %âãÏÓ 1473 0 obj <> endobj 1485 0 obj <>/Filter/FlateDecode/ID[<9542F09CC4327042A544F1B561BFE322>]/Index[1473 17]/Info 1472 0 R/Length 77/Prev 17853498/Root 1474 0 R/Size 1490/Type/XRef/W[1 3 1]>>stream hÞbbd```b`àb‘§A$£˜¬‘ÌkA$“4˜-‹¸†‚Hnn ɤ$ÿob`bd` ›ÃÀ%ÿ3üÑø` ^É endstream endobj startxref 0 %%EOF 1489 0 obj <>stream hÞìVkP×¾+­ V°B¶CÀ˜G $Û2ÑzWØ< m¨‹ìÆ@-ײŠÆJ‚0¡U;ÄÄyÔÕØu’N6vœ ƒxš*¢‚7}@1f2Y'mÜÇÝ] h;ùÕ¿Õì^{î9ßùιçî\ >@ ¢¬ýp €Zˆb•¨ÓõO\ƒ¢ø† Xæ÷%º3GL(×Ý"ìªÌÁ•¤(qaŠôŠÃNˆb­€beO0/å¶ï›)pÑ þ”׍¡vð«ptb¨4»Â}`j Måa¿u¡fàz>þúìa|—Alù¡‚·|ù»ÐoìÝ·î]J?ŸXÚLUß«Jíù'Æÿ‡Îóå´µ7Ë:ÊuŸo˜öƋ¿Æ„Çžr›ÿ‚–,lqK·Oµ?=½;¾` ÝûøõÅg<æ¯yR·ê‰Ô(CR‡Þm˜É&/ù»SûÚ+*¥ÝcÉûå+X˜:¶ÔáJÝ󩙢ÂÛûÒ+[UõÊHÒKý»Ï<·|¹÷oŠ~°B憎4Ÿ/Ôĉӟy 7_ý=þÃÖH‰«¾myY«YíZrñ~Úþƒòp®yïe5>‰æQuãHšC4¾¹ ½ƒ¤_ˆ|ÙàŠ\ Ëq’GH„A²Þn­ÛŒ_˜¿øóûÃó/%ÜÑTî)슝+Œ™UØáŸÛùëÂÛIGÅ×üƒªyŸÿ0µéètò'¯í,¼ž8Wàûݕ/<Ù~ ÷šÔŸ¼þmŸTÕú¢ÙžÄQv&LØæQ“#x]Ñ¯Î¶yÓà´¡Û&4ԛÚi“¹:šŽ&omÔÎêSëiŸç 9b> -‡Ó&&°ÅwʊÂjzìâ± ´ŸÕ— ~‹}'™Öòªö‘ï­§3&4D”¾qŸ‘h#ÕÍþï-¶à­› MºY²£q@©èKì,Å/[› ¥CD™ŠhÌ{òōæÚ§Eç+ރ*ÆXØå=Éϕ±¬þiSumG"rÊ_.8,¼Ý%ŒmßH¡pIìˆûŽ+-z}¥âá;Yה Wô¥ùh¶_Z@Hn¡Fƒ]­AaÂ[ü˕´ÜBŽëéL#¶ØóþÖÞB²£€ }þŸ‘#ÅõļnÊe°‹›!Hž[1èõ ´^¸ÂkØEig«b¾rÃÊ |¥Òn…8–ô™niwòԆÈÝe0t×Ëhñ{?¶¢ Æbqú,cC†½eÚéÕëÏÔT£ÙÞ-¹ýÚÙʔҭ¿‚ä3ž¸Ëž–™ë¶œ)2o(;"~¾ºÓè"鈋1#éq†C÷”]ܙë‰Å±_˜²ú»§HzÂóÀb½GŽÔŠ¿›½_%™kàêàþa>·ï¦¾òªÁ^h—NÅþ›*ÙÕ#nu††Èl#‚…w²Ü`Û°Ñá¾oaÀóք¶a 'ÜJŽ•]y“‰;Äóc­Ê%‚nó²fùÏ®Ü}¨ð‹;)íŒL~ãlfÖ+ŸM‡A.Œ£×`ÜO©«N¶£»ŒQ-LP†¶!À¡ãî‡Ðî׿íZ†[lT*¼âÅFZÆ7–.@¯“0Ä}®ð$f‰/b¦ß”÷÷BœQI–Áž–qÚýb²´qÜUØÄ`v«5C±Gò™š¼LՁŽ»°b_<'n?´ÿUØ´3§KTM㮾´q´¦oÄX„ÐÚ·acÈÊî»qêN°Çþ€GžN?, ±ùQ»nÒÃsÁñ·dìgÚ 7ȳÃúÀrƐ#—7H~O§À–†¬Š¶ìä<!ÚÕFÒ°=ƒ¯kf¦½¿ZA3¼h0â>èó˜«×}":ÉÄ.æ¸á­ñ‚¦VCÂ¬¾`ÝâÎc/¥f….¯ô¾$‹9ÅÃéLób¾9ëßpÚ·hø6 ›Ó À^f¨€€l«u:•NálggÈf§F*ëúÀz2§Nfg¼œZ+àÅ6VÏ·±FQÜ,¤Ö¶æËèY,C¢–Ñ…°:[àBh²1Œ½´Âæ B'b²9d%Þ`|·]áŸÀÆÈl6¼d6,T@sƋ•(áØ&°F|Î hŽ$i‚ë^’Í´G)K™Y•&q"P&ççQ i‰“[)Ì©ãÇ9'à F±ÁúQΖÑÆUbCeÂ>.Ë&R±’YuÀ%sWh¶¸ MЯp:OÿAŽmݶs-°Z#)‚º +Äé.„Ý„ ¤Cgr+lE“‚‰²­ÂêJ¸E®”,w^‚-zÕ֘ Ԉ͉!CÙ8™s©XE aI¡•,6˜¹}8—upº}}"ë•òÿ!ãÿW«ÿíjo§KÚ«ƒõ…¯–½°–h°ÙJ?9¶ZÁi¶Ît6y‰§èY± ¼â Ó{Þ7€ ­*¶€9ª¬è÷ћ™UŸø=èƓyŽdÃÙM@¨;ùd9dM‰Ÿ$͕ÎIƒ~=‰<áå8ôå „öðƒWø§œötðTà*ðœ[˜âÇò8"&·¢€wÞ¢yÑÖµK;ÿY$9Ëô5|ŽýK€ ƆZ endstream endobj 1474 0 obj <>>>/Metadata 808 0 R/OpenAction 1475 0 R/PageLayout/SinglePage/Pages 1441 0 R/Type/Catalog/ViewerPreferences<>>> endobj 1475 0 obj <> endobj 1476 0 obj <>/Font<>/ProcSet[/PDF/Text/ImageC]/XObject<>>>/Rotate 0/TrimBox[0.0 0.0 595.276 841.89]/Type/Page>> endobj 1477 0 obj <>stream hޔSYkÛ@þ+óØRÒ½A0Øn܆•B¶Î֕%#m ù÷™Y9N[BÄ0³s~ßìJhoƒÐÞAaI{PÊÂñ1Ÿ–ð=Ô}d“vÙvÛP³éÄ{ÎæWûÈüê+ǐºûÈʋÐÿÀÔ&²Åã.²“‡ô±L!E¶ ¹®Ý u£õïW±I ¸älvŸbµÞ$°Þ±qIÃÙ¬ë”f³¶I“Iûps¤Í1¹ÁmŽÎ¶ªßLÛ¦O¡IUx;¸«:J¢&éçìºÛÈ®ÏΗó³w/é9T¦.¦Õæ™1¹–4Í9;M¡®Vãf]Gà¬Lq{ …èR*Aïª]j;öuÏH•ùNB)啹'ͪ½«š5[V͸é«ÃyVu}šnBJþÖ¸3"tö9ÒHVÞKf’Q-Ú/M…í"¸"Ðâ¼»´éo¤ Á ­9x)À:¢À׀+&ÑJ1‡XP¦ÈZsô)ŒÚk¤êð,@;F£öGŸ¶9Ÿ„z<‹V4Ó: ¦p`…C1xQÔÕq<ïžç §ìPpNà9Öy™µÅ©F`/ÌsÏN䇁E8¾@Îezôž‰z´0ª-–ZԎˆPÔc[ÁKkŠA[€·6#bÆR­…9á(´ - ÏNÉܛÞéÿù$wY”UY¬‚ó—/í[!¶Òê¯9¯Dóòïß@öW‹çµÒJ‡G—ÉÑB½ÚÏ y•Zì­ìÇ%þ$·£Ñ“ XAŸ endstream endobj 1478 0 obj <>stream H‰¼SKsÓ0þ+{”V´z‹›IÓҒƁhàÐé©f )ú÷ùÖ©Ó6œrÁËòì~•whv±±ôíÍÎw–Î~Ñz KÌƺL±Fãr¤œ‰!Óï/ô™~"cBŚ÷±¸Z€²S¢wµR_JÏH— .ºÛÑìr’1L!˜”b¥ÌÕ¤l£dZÃQ‡Åg,àzOŽ‘çŠn,ySßZÚÒÁ–0îȗ <èm^kY“J䵎èíHì«`Ò^ð°ÿGð©¸è@n‹ÿŝ¦urqohJò˜êDn-Ó÷ç¦jMµ¯ñ•Úu²£öHb7^0œÁ²7ž“£¶£ÕÞ-´·Š.5«ë5–á£vU5ƒêWó…fõm»:Íq¢vÜp>®ûÕ@#fоªOøHm^áNJ—bÐòÝbí^ìòÁ.KJ·Ï™¤¶bQwä·^ºsV­—ºãªFwo4vÇJ '”Ž”ž&ÔQjŸôRª×! _¸çýe,uˆŠšfq ‹—^ª79²a5 /Ú8Î蕌!F°à¼ñ:sqƹ˜CÚÿ‘1œ}M,Ø甬ÛSÄúÔOažFø¯ Ää¬ endstream endobj 1479 0 obj <>stream H‰\ÕÝnâ0àû<…/ۋ ŒǍ„€Úû£íîÐÄt‘–zÁÛ¯ONÕýAjs 'óÍ9³íîiׯnöu<·ÏùêǾóåü6¶Ù½ä×c_Õ×Ûëû»é{ÚÕ¬œü|»\ói×ÎÕréfßʗ—ëxswëîü’ï«Ù—±Ëã±uw?¶Ï÷nöü6¿ò)÷W7w«•ëò¡\èÓ~ø¼?e7›N{ØuåûãõöPÎù³âûmÈn1½¯‰iÏ]¾û6ûþ5WËyy­Ü2•×ªÊ}÷ß÷õ|Îó^íÏýX-X=Ÿ—CÉ5s¬ÌŠì™=²1r`ÈÌÈ sƒ¼f^#o˜7È[æ-òórdŽÈ‰¹t²:N¡Sà”óY˜™~_èø…~_èø…~_èø…~_èø…~_èø…~_èø•f…YiV˜•f…YiV˜•f…YiV˜•f…YiV˜•f…YiV˜•f…YiV˜•f…YiV˜•f…Ùsæ3÷ô{ø=ý~O¿‡ßÓïá÷ô{ø=ý~O¿‡ßÓïá÷ô{ø=ý~O‡Çh0ŒƒÁh0ŒƒÁh0ŒƒÁh0ŒƒÁh0ŒƒÁ8CÍ34ÌÐ8CÍ34ÌÐh6˜g0Ã@€?Ðàôøýþ@€?Ðàôøýþ@€?ÐàoPw1¯±¦Y0cM#Ìè¥QfôÒ3

2. [PDF] FAO Forestry paper, 117. Mangrove forest management guidelines

  • Given their multiple-use potential, it is imperative that the management of mangrove based terrestrial and aquatic ecosystems be undertaken within the context ...

  • %PDF-1.6 %äãÏÒ 4897 0 obj << /Linearized 1 /O 4900 /H [ 1074 1542 ] /L 17263105 /E 27613 /N 345 /T 17165119 >> endobj xref 4897 20 0000000015 00000 n 0000000722 00000 n 0000000928 00000 n 0000002616 00000 n 0000002822 00000 n 0000003255 00000 n 0000004266 00000 n 0000004483 00000 n 0000004591 00000 n 0000004694 00000 n 0000004798 00000 n 0000004901 00000 n 0000005006 00000 n 0000005107 00000 n 0000016771 00000 n 0000016795 00000 n 0000021020 00000 n 0000021043 00000 n 0000027590 00000 n 0000001074 00000 n trailer << /Size 4917 /Root 4898 0 R /Info 4896 0 R /Prev 17165108 >> startxref 0 %%EOF 4898 0 obj <> >> >> >> endobj 4899 0 obj <> /Font <> >> /Fields [] >> endobj 4916 0 obj << /S 2963 /V 3024 /Length 1450 /Filter/FlateDecode >> stream xÚc``àb``1b`a`—cb@ !fVFƤfgc·Pg6¦ÐÒ2“äQçVç²å%ana.ÎÎe..&E.!&®¦Å¦A¡Š‰ÍnÎÆfÆA.)fÎNN.JƂŠ¥"FÁIN%ÉjÊ*.*æeÎ&&*.†fî©n%-î¦*jA®F¦jáéi¡®‰Ê¥â.É©®ÉMÆ.j©Æ¦ÉS•“ÃRÝS\“]\ÝTL”•ƒTœ”œR]TÜBœÌCœSV´™™¤¤¦˜:‡†ªD,XxØÍIVÀ!ŸÁÕ={’°@O­âCøƒ[æ+>ëœð¦§2VÉ©Õ¿€!Æ\šAéÄÛ ý_u»ºÿÛ4KhNá~›vßr“ŦS—ŒN™‘&½Žó÷â¥J:"S?Ù_YS®9ËcÒff…I¿µrŠ,î»Òó\ùÉ© %‡³¾Þõ°]Þ¢Ñm¡¼ýÄìC± zTµ¼./ŠÛ2u±ôτ ÙfÞÓLŸ»s“;O{[oûk£0›ºÄØyç¶.*êX'­æë¥ÀdÍ8YW-¸Óø’ÀÞÿå*\"i›š:TgÝ8m,8cf›ü2o¯Cî6L×<þª¥Ö‘9]!Ò·Ì(B!ÿ‡Òé&—ØoÔݕ}ÈÔbY ú-XQÈOãYvÞÁŽÉ̏»D:ÚÏ%J^’_ä¾Å°NaÝZE+·]M†-õ†Š3ÜÂ'ÅgFR5so ùè0íþžéƒÏVL/VœÃþqc®Aæ'i÷îC|Oší¦ž\§TëQǮ摑Ä-R»@p’Ï«ÂKš:•W»])þQ çÐSòiJÏÚ=JÛ;5’äwÕR{u²÷‘ä‘–“Z֞*Š/L uŸùžç°P€x§â$E>–r?"ŒŒ¶4ivt»Ÿiêæèt4Ñ÷ðz¸'¤ç„‚Ëá9‡º—,Û®Æv§eñ×=›;4ÙÛWÏhHýÌ!õ¨Ö%i¼T{ùÅÿ'foV1w·srá֒yåZûðyJÎ)_7ƒéÌW ,´6¶»‰2

3. [PDF] Articles - Food and Agriculture Organization of the United Nations

  • Mangroves cover most of the coastal areas of Africa. They are salt-tolerant inter-tidal forest communities and are restricted to tropical and sub-tropical areas ...

  • %PDF-1.6 %âãÏÓ 135 0 obj <> endobj xref 135 43 0000000016 00000 n 0000002233 00000 n 0000002299 00000 n 0000002534 00000 n 0000002740 00000 n 0000002898 00000 n 0000003247 00000 n 0000003516 00000 n 0000005654 00000 n 0000009034 00000 n 0000009352 00000 n 0000009714 00000 n 0000009943 00000 n 0000010061 00000 n 0000010321 00000 n 0000013158 00000 n 0000013195 00000 n 0000013273 00000 n 0000013898 00000 n 0000014534 00000 n 0000014611 00000 n 0000014836 00000 n 0000018318 00000 n 0000018906 00000 n 0000019677 00000 n 0000019927 00000 n 0000020639 00000 n 0000021265 00000 n 0000021587 00000 n 0000022400 00000 n 0000023192 00000 n 0000023624 00000 n 0000024503 00000 n 0000037724 00000 n 0000038878 00000 n 0000048780 00000 n 0000051473 00000 n 0000053008 00000 n 0000065248 00000 n 0000071507 00000 n 0000071879 00000 n 0000072210 00000 n 0000001156 00000 n trailer <<2942126A0D6B4502AD8B006B0D998FEA>]>> startxref 0 %%EOF 177 0 obj <>stream xÚb```f``9ÆÀÆÀÀ¹™Aˆ„€bl,S8X˜@¢ŒŒ,y'±S›¸=X\˜º’ˆ©¤µ3\S|Ì páþF«i ²%Œ¿ “",®3oºúõÿ櫌î þ Ò%l¬Œ&mÊó,—ϲ¸ÓÇ¡ÐÇ¥±(C¡C­ô.ð&Ðf»$C³@H—ÎáÐowJŸÎ\öêÅvŽUû¸]ŸT(œÀaÈjrè”g¨däó˜Ú=º«8¢‹u½^±nö›& O[AåI›$Š=Cg.z6½v»lu̗.îǧDü vûè,™8uËU ÆgÓOY(µ2s2¶+L¾¤±™ÏTT4rúíÂëÓ³^i/ãÖï²p0˜ QÄió¤Kçˆo`èüÜãq˶eì\ú­‹[¿h ›L“¿Ç¢3WBBÓ⁲±«W¬›¡³Oã!’;/i†JFÍz±äT ;->yȤ0ñ8úlšê¶«ë%НU¿ºdϺ< IM:`åºîµ—¾Úı¾Ý嶂]¾ÊB©Uxj Ì( RSoU^—®ãx„$¤±™hxåÔéYZ…ûU9(¹Ò¥s4¬^>dªx–^ìr Ö÷!…6Ð|ÓPéÚãq@]Mµ\æÖT IÍ^½húÜÂí׳g(m²~(pÈ!ñ„Êã‹@]o®ŠÂ|4+~łM?MÉ~ÒØ,úæq`äìë@a>+î„~—ÝB™@Ù/À$ÑëꚷhWX*Ø¿M§!‚”`B·ÅÃbW(†ƒhàÔ;Ë@1¸ÉË¢JÝWCr¿ƒƒˆc1® CO$ 7ý{äfX„:#¨50(~- t¼ÀXu K}“ûC©–ö…””Œ-:€"¡(B¡hü´´„&AAtMJÆȊ€|ÕÐÐ4! PA×g2!$2ÛCŸH‰ ØbW±hv‡"i ëÐ@æ i hŒ å..èÎBð¡*\Ã:PĀ¦›x ‹1€ƒh6ªYÊÆÆ¡eŒŸ¯‚*x|#e4-p#™”AaÚ@²8vei ¶‹¨2ð1KpMs´`^Ðì|P’U„‡AÄá¾ö.'Φ}ÞRŽ9ºLsš^8Äô™MÇd͖ØY*ËËÖ¯N´ùàÙp‰;€ã‚³Ãq– ŠW†0ñ0LS=¨Ïú@fBƒïvN¤Â¼Sé,(Āˆ À äò/ endstream endobj 136 0 obj <> endobj 137 0 obj <> endobj 138 0 obj <>/Font<>/ProcSet[/PDF/Text]/ExtGState<>>> endobj 139 0 obj <> endobj 140 0 obj <>stream hÞT‘Ëj„0†÷yŠ³œ2‹¨x¡ B±-¸è…:í>“m Æ…oߓÄNۀ9_Îÿüámwß½u³ìq…Aåp™/N"œqÔҔ–ë~ »œ„NÃý¶¬8uf˜¡®£â²º waËcrüÅ)tڌp8¥ï”è/Ö~á„f…šŒ·OÂ>‹ ÿ™þ-6‹…sºË˜.VHtŒu–4PWEhÔÿ»çA~ Çbg’P .#—žeä–8ùÜçsŒü@\¦)‘ϱ§ô=U˜#-û_Ó QR]å»\ߙæ/à=¾Z"/Α[á!‚ÞmðúVv¶þÚþcß ãŸ‹£ endstream endobj 141 0 obj <> endobj 142 0 obj <>stream hÞì–iŒgÆg›xv²Iœ&ÔÁWã JD¨PH„ш¦‚BJ[(!Ûd½»ÞÓ׎=ö܇íõܷϬ÷în£. ´ŠDPŕ‚Â!…‚@|á|Ahy+1N>!õH%Ræ•fFšÑûþõ¼Ïó{ÿÀ·€øÌç?wòÄSŸ¸09œ»ð'§'.žJ_˜{±ÿ5Ú}_é=vçÙ;ÇÞþ}Þ±‡½ãûG~ô °g``G`p×î½û

4. [PDF] Mangroves of East Africa

  • The most extensive mangrove forests are found in the Zambezi River Delta, where almost 180km of coastline is covered in continuous mangrove forest. This area ...

  • %PDF-1.4 %âãÏÓ 191 0 obj <> endobj 214 0 obj <>/Filter/FlateDecode/ID[<364874D292C64044BC149E040B06634F>]/Index[191 37]/Info 190 0 R/Length 116/Prev 790909/Root 192 0 R/Size 228/Type/XRef/W[1 3 1]>>stream hÞbbd```b``a‘Á ’q?ˆdß"…nƒHæW R@ÌˊL³ýA¤„:ˆw³€H±Y Rò=˜4‘Ò“@$Çi É(sÄf"#Á$ça ù¿ƒ è?°K)"ÿ30y0 ŽO[ endstream endobj startxref 0 %%EOF 227 0 obj <>stream hÞb```f``J``e`àvbd@ A (DŽ–D†¦€)J B,ŽŒ;}VD÷–9´‰þ^aSðÉA9—oe—ò ǃO~Ÿ_Qù¥ÈWÁGTƱ­ù|§ïŽÝw4Îp.Úw–¡c׊¬ªUUU«–¯ZU¶ƒ£ÍiÆ{NîBžãkç ‰xÍÒjøNñÚAÃ#Fb}ª[œ OD_;¨èSÈ£$Ù_$¶“+¹£|mSòV× –Y´µíhi;b0a™í«*š}Š÷¶qö9Õu¤èBÔ Ë=р¨³"ïë`ç½9 {߁ˆ× @±CpZZZChh 0pÔC”€Ò‚i 8i¬a@B04” (Êll Ԕ26†H1›¥¥1° Ë3 ›8 L™2L¤1§‘œ@PÏÀýh,ƒ(K€Ct??ƒô—ŽJßhàÌdš w!J`§ïf66YßÌv3.þ¸c;”UL5[~@⺉‡ifâ neàXå_0 ±L¥ï endstream endobj 192 0 obj <> endobj 193 0 obj <> endobj 194 0 obj <>stream hޜ—ÝRÛ8†¯`ïA‡»³Ÿ%[þ™Ùa†á ´lYL¢$n;8®~ßO²IÂÒvÚŶ,KßßûHQRO( å¸FÂ"\cá'×D„‰JyBÊ ÁRÇ­”±Šqãs“øÁ÷aÀ¯´ð½‡Â_üõí•yY æéÐðÃBÛ%=q¹³CûOõÁ Nk~s0Ö÷¦W5:{Ҁ>êÙÅÜmdp#/ªr80õ-]t{težjêÏ҉é¸ËÞݜß6Cž­?Ãt^lçèÏØg¯¹g£ds7¤jî9¾[hgç–öÒüò ÃƦ³Yz«¶„åÍõŽNӺʞn½í@"4Þ6&„¹ÛžDD¼m_GüI{ÛR"̸Ğæ1‘â§D{úŽ>N³Ú\”YQߺ.l{qr·³s3»bœæCƒSþTь™¢Îêgºzž›U„wv0¾›Ç¦2ÅÐ,n%-8'tJ)4¡ŠJz$CÓ>Õ´K iNKД†%¦šÑ==Ј®è™r:¦¹©²rD}úJ{4}žOMA—tMgtAé€:T†ê¯%fÈ˂Îé‰êie½˜ª¤qöhhž/±h¹¬hžÂ¸ÜŒkwWe“iM‹ì‰zTd˜ga1ZS—¾Ð!Ð6`‡é†–emìÇÆ~gŸG÷¹íjܔŸè3¥3|ºH‹Ñ]©bXŽ²bbµ»àIE$r>?´º§iZ¡Ú~‡ó“Æ‘¡º\7Ýù2X÷aÃØÿà<¿^3ºƒy æ3²dóóåQ í¯Á²éüBÿþvˆTrZgP׸hm)_Q/O'Xw:åÓ햄ʶX^Rú±žçÝÙ·½,7¾‰všFÏY:3´{vvtrüg·¶ujFÙrFý:ͳán1ɍðhP›ÙL£\Úø;6 ÊæuYÑM“« R6‘taxÈ;Ó¶ ·È³&dÕ¢æùfZKCr’6#"ŸËûš-`3$]•×E† <²hZ™G³Q=]ܪÀ1p¢}Oè0T üÏ앸â9I„¶†ž+‚¨@«b-´öÝw LEJ€mEî]ÛBýÀ8bjp:BK>æ‹E …Z‹0҂i*žcaO²}®ù°©®½UßzóyË@³Ïl_Óù˜öé ~$ð+ `S bø£ÙöãØ¦µ²>F¾w÷˜úÚVò’ãR¼Dq àÏ!—]‡PÐ5dòê»E:ÁZyfPð½­f'‚Š~…ÕÎÄèvìt:…`Y“Nlk(:¤Ež.¦PD× æýMG­?¿´_çÍß?Ak÷¼_çʸÌ~콃”«Æå)@é!Èc„±ïœo¿¿‘#‹†Éó&B8ԇÔ÷°¡B%ƒxƒï½ìÐÌ©7ÙýŸ½}+òN™Þ'‡/žë“®¸¡ä¹¡Ô&7Âø;܈¿Á _Ìè(bkèzƒžœ(Xgړ"‚–ë0rà÷¡Àhc|{…Θ@±†þu,EG`€ÍrëUYNXΰ~ß6…ñ>xÔÎí{̍6°¾%å Zfnйc3ÅÙªÁ*×Î׶6ÌØ2çSÈWØʼ²kƒ+hßfDi.) ›/•=Àp±qéÙº=D3DF«ö={¢1PÉÚ©¤‹ê½†D® :WÝ?:¢X õ°k²ºÕ¤,̯«Ò ’sÒº€6¾@9ÐËã…ñbf™[Ë)èõd4Ë ¬}civ™¥jï{‡›Q™çiå:]Ï2.kó:ŒL1â%ŒëN'UŠµŽhYŒ°ÉË ‘tF”ì.gã܀}n˜Y뱓b1¸šå#ók`;XMãR°|ãOm·x\7t#çG­gß6”»HʼnMÏó†÷¨˜Ó&/¨—óõÀµ$\%ýÒҘœAÇ('—µ øNQ níUZ¯QŽMàזÿ÷·ÊâÊ wEf#‰Ti ´ÉÎ ŠfU ³¶ÆÚ<µU6Grå¹þ‡º,¡ª;^*W&Âʱ;b“nSl¬¡U•ýøÀ‡¿“[üM2¾“ø ³“ÿ3û¨oñzi&KNà{؎~á¼÷fÚ5p?·Þwœ|ÜÊó¾uàKìaϗa@S1,b ¬þ3j†8¿S¯-Ä*×,nÚCRˆÃb%¶ç¶Ðn¿cðGT¿g!ª°GrkǨ$¶Í>Øj¾gÈFÒ­ñÿùÈÃfÂcb̚ù±^ðÏÙÇkð3ûãO½=Ìá{^Ïç ªõI3ôCófÄvÁlhÜt¾ñXà?¾ýÆwñ⍍Èöy­ÙMGñfðŸ á=ém endstream endobj 195 0 obj <>stream H‰\T Piî&tw¸mÄD;QWgðD@GY䈐 ! „ !¢èx,ެ誣¥² ¢áEîSA\œu w•à5¢N¤XpD«|ÍþP»ÍLÕLíV×ÿ×_ïýý½÷½÷ýÇ,-0ÇÅ^AAþ>÷öš¨ŽM0h'¬^œ=ÆIqnº7CÀMµD3l=¶–Üt[d4Ó-Óþ½›`/áÿÉÎþu·¥@3 öÚC‘¨vú”1&Àñ¨„¤¹·!=&^î­Ö'h’Ýä^IÑê´ôùþªdùF.ÉY¾xåJ×ò†è¤}¼:V½Sî«KN߯K‘û%§«Ó’Ué ºdUÒ/æ‰%OS'©Uzµ|±ëï9ó'Ãmä˜>ÿ\°ÈÚÓ*€ØD†cªi-pÇ0ǬpÌV€‰¬±™V˜3-%±U¶v–€aæ…aþ|E0KŒÂÎàNx"^ƒ?Æðq±…ÂbE‹@.øRPoik¹À2Ïr„p$š‰÷d0ÙD‰©ÔVê©ÐJ(µÂ"á?­‚­Î[™­c­³¬[¬_ÙL· ¶ÙnóÒÖÕöˆís»•v v}´ˆv¡5ôYºÞ^d`ß:Éa’vR®ÍiDÇDm¢OâÅâÍbƒø¬¸Œó¥ÑŠtAV”wáí&›ÀmbŒ^æ=ÕxkõêÀPWvåÚÚ××q«ŸE¹'Œ‰ÞŒ+ˆçdgøÿ{aü½›ý,G ÷LdFŠR™qµ¤ò¯ÖÖæ§D²c›àïHåWþÇAʃ\å¤aæðwÂQOd³šîäÿ#Ç|P÷mK¹ŒFÇûGp.Ñfžß]$ܟwÈX.áâ¨ò“ÆoòØE¹ç}»“S24ÂíqGcc$ciTÌñØKql¾¦8¥,QÈ£À”Ø V—FU©Ü~ƒÍ(×Ë||õ¿¾ ~³ãdJ¼d,ŽŠ?”²»[·ëk½¾ÇDZ¬¬È˜_.¼t#§²JBƒaÝ €Ûf¹Ã*g´ ¹;ƒ;rwŠF} @ȗx#!*ä-rÈÄ€z ÈäªwæÕÙ@ã}@@á 4â?Š>hæ*Íø÷#3"à’ œn &/0!=ÐduShò[ €0ÁdÖ)‡ñUøû«»Y褺+ï߯Tø²tvþè8ü•¯8Œ*œ($C¶< 2 ‰±aŠÎ6sߚqΆ”ê`Fµèá*QwûòN Ø/7ñÙ¹®BvìùôVÉíQš}©)ÛXdDýÄ"Š>ðö¾ä·8‡ói `^ǶÙ6ãµæ^ X»>Cvˆ\²Ùä1:OVUvHÛÕëü”^²Ì%¹äÓÊÈužaJ¿!e½‡eN$’ø9H)ؼë2žÃ«AîÏ¢÷€;ô‰\ns‘ò¡ ‡;E ;E8Cµüݧ_òi{4ãOނꃀÓߙ²ºÿt›-NVæn–nQíJÓË`#ԛǦŒM ®Ÿ-+n—>/XqX¡ÕÊvîLݯ•$–wfñٜ=§¨P“J[õ]Òîæ²2YKËéï{%|— û%4eàwF@;Q>Ð0 ZþìѬ,̇»ÂI´½ ’ Á_Iãk7°ûWý0•u:ʬ‰Œˆjê5Õ5Üëªñ™è7lÆ;‡Ü®Qœ1¹£¨a°-…²Æq,ȉ¨û_ƒÖŒƒp™°•yÑVÂ6UÝ|,›…}¼Ü„‹V#Ϫ°¦Ø²Œ„C«z¸‘ÐÃlˆŠTÖwvÔ6vtÔ)Ù³¨‹ñÝâçÚòàÁ­V~…øMdE/!ÛüKî8ŽKŸ!{dï⊦"Ñ·—sNç±h>ºK NÂ2xA”v´µKx’‘[ÖÇ´öôÖ5Ý»W±†¥ÑE^ó°œ×ýG°€*^ùv¼òÁýv¦ÁãÀ+èè‡Ï~ÂkaˆâǐËQ†Ë gþ]YËÖ¨¾Êõ–¢9äÚM™*•L¥ÌÜä)A©%ùê»lO[ºïò ܧšN•””°EE×ÎÔJAL֖ïO1ʊ’Ï$*$AԍÄؼ`ip„!>Y¦QY*Y|jK…’/mØ~[Ú~#¯¢LF…=ŒëÎõ˗gvõ÷çvÿøãß|]Yú._û·\j΍; ó£ …DçùyÙ³ ¸F6£Ù„;ìeŽtôPöh‡@9„ U€ ¸¾‹?mi .`›òšÚL°]ñ9²¨d\Õ$ˆßôÀT?ï3~ /‹\@ .dw£ÆOv}ÇlPmõd‘hÁƒ|\¹AFwâŒCü°áÁAÃëp]fx˜»T¥¾hL“ÅWdUÃl Ì>]}½‚5^©¸X#}Ò¶.WÆKf¥Í3¡©R¯€”ðp™Ï_ÜÑ šq̽LJ o¾—òH Ì{Ì*”Ñ?gq~åQ;ê_0Î|8ùÑÃÄÖGúxIQO ‡|t¿ ¾^f2òƒaóŽyÄE³Û´1»C¥ÿå»Êƒ¢8³8ìn“[©ÝiÓ]‰Àe½6°Ä{ ‚!Š‡á¾9=–u…BKQDWäu,ã ¼ÀUq-¹Tt§¢(Rf}=ùƪýº³VÜlÕüñuÏ{¿ï½ß{¿ï}¦%0ÔžÉˆ©å›Bò\ítf(æ „IȖB«|Chž „Áø˜É÷•E—cîD*'­Üãâ?8˜.ЌaÛ8Š¾›3Ø!q¢á0œ`@†Šç}(å¿32)ŽÛ”’ê÷7gÌܔ©Ùáÿ¥Gx±µéä?=C`—õ[Üܺz¼»‹ÿǹ²<%~‡clƒîd‰#µ¸ýc|#ԍÔЍ,¤p{Azñ,¨4×b:à/™‰yþûÖ8SŽ gH‡“šA¢ô3?O¢„Rð>Ì?ô‚ paÙG8‹é{" 3ìýM˜/"†KûP(Èô5 ¾&Ì`B"‰'Ù81L‚Œ¦Dì9ÿO¸)z¾+yšvS莰›°•ÜöpÇ´‡ ‡_÷Ÿ%nKK¡>Þ7äÜÇiTk«—ÿ—ûÙþžj†ïëÛ3‹Í‚fe‡F…s‰›Ã҂Ùà°2©DÙg¤0—è4.‘útZb%ß~ ÍRÐ=˜÷⧰Óܛ" „l¬Ï¡ ‰°zp$h +ï³B„E4vÂ|ò–6pO?Ä õØbiA9r‚kÄð±ËW&ðƒ±:!¡uKÂÔIä {gUȗ¢L·`™þKìÌÓÇ1#µ?ʺ~‚Ê—–B#2—R´a \\uDéšÂEE3b¾‹/J-šR¶«¢JÑÓÖ>rQ›ÜÂ]¿Ft{¬9þGÙ.pDVëËcøºø¶äó»F¶ÏPçÉ>’6µ<í`R¬ÂÅ;tîJÏҎÜ—«—k›_²`÷rt,†1üUL¢ZRÊî9 4!\3„k+Ë3ʒewpí¢É(d3B,®n$e¿nÝ…ë/<æ„HüK!xÇk°|6½ÇÜÂF?‘$r2• '¡„@SHÈÂ'áIÃy³ñù¤•i?š%ìËYxi…—ø5x`óI˜-䂵)/é¢Ið+r”$È ÷"²"Ñ'¨ ߦ Ä5„ q”hÂïçBÌCUi>˜„<Üû#ŒÇ‰&9p 7«©œ˜Kё9÷ÀúL×˾x°©ä` €r¾€ø?û¤mðå®®%NÕTÿÀŒuç#‘‚BS×y8«JäcëÔ=lOcISƒ;™½%#ƒKJŒßƺÇWµµÕU_äaIgá‘=ú|“e·' ï” ˜œûJ-W“X¦d½ƒ³#x8hýÊo¼‹òo>›©cµ­e55¼V»_? °–/ÈZ2o^æÐèèáAƒ¡xéŽ^$ÊtÎ럌óU"jÓæ¬P6,¦ôÄ6~[Í®¦Š§ŽÕp'ŽÕ—žfÏTfEäû®Z_ÕQg‘hŠòDž0ÅÈ>Íßµíüqv›ãŒoŒè Õ\ìÍ*Óx¥2Ça™bÙþϵJ.¡¦5MËêÎnkæ½1˜·ãLÌy ŸÞ€ßߓéž[ ©°•i¥`ö’q4Éí‘ò~î =ÔTwtpn—ˆÈȸtOÖÉ_§ç!åƒRȼº}%…S›K›ªÚÙöSIá¥|áÖo3òbñmþo¸«g½l_p;'fð³›TӑcÍ\«Þ´\½’_º~éy“Ó„àDÑi(R3 p㑘¡x·Žú–òl½©¶ðÃ8àtœ¡Jµk•ƒÂ¡`•F…3Tã;ԇ[šx7juŒ‡ƒOBIí&Î͍PujRX`ïŒâãʙÅ;pîۇ†‡‹††CKã«ï³×…ÆÛeÉa˜‚wÖö#ÂÇ?%<Š“j>½T[cwwkô2Nš:ì8ØÍ<„XàaAýdzÁùÖ¦|хꍛ°Í 8,Þ4zåÈ7¬MW¨°Ìä.àórL}åO§š¥„1… 9RÁ%X¾’š|P!¸K‘ØQ·îÁ§ø™F{õF"Y6ˆc¨—먐̣§y¡ÇÚtZ¡vÃ߈½R~²Ûã.ÑiTËa€êÎhkæNÄù—md]•[|BxÍ&UåZVé“ÍkmLùp™l—^¡Ëp•ºy®Q7ùHÑûÞÀµvH ÛÍ AT©ÂÔý/ ŠŽ7«W7{nÅyo{¯ï9®!ƧʅuQ%EÇð¾>ÛÝEîí>\t½&é:{ý\UC=ß~®¨÷>֚Wî7±±\JJҎ86nó¡ò¬õÜNB—ßYWǕ—WÖ²µU;SÊùºØüo¼t > «¥qÈÑ¿x ¸WH¦8ße#2\H6©3»XmËÿø¨8èq,GÌýlÌÝêÅ*ÞÖcîÖ.©[Q!%Ny}ôš\KaÎ4FE«Xύ›#“xDé%ª¯­E×xdÇÖ ŽvÍуÿîɺŸ‚?öñƒyÌè†VûnñÂû»ôŠZEs]õ¥ö֝‰'¹Þ+ÄY?·Òåì'Žlê‚ïâogšÜòmÑ _Õ¶¯|¼©C8WWbÝž̻,|0ªû7O£­{õpPև,¡M®¦ÂS5ñPýtÐæZ£¹XÁè$µ²eõcŽÞ—óHX”,ë7ë7]Žõ€¿Ô7ÊÓ3 aˆƒËÖh€ò,ò=ÎÅ×~ŸÖÁj5å͍¼’¢íqâéx”„ ù² Ñ4dDïƒ_xðà1åwñœr6Û·ˆ62қ¼‹M–è=d´›4^€ð¼„iè%¡'鵓ÐÛäè/P‹ @’¶èøB\Áb”‡V¢">üØ¾}wüúۑ•Oówìó€šR vlø͵ÂõOy¾ kRMM]‚t¡þ¶M¦ ˬYÓçO]ÎÁ§ÕýìûÍgŒ?,ŞýžÄþ}Ò÷Ǭwþ0|obÿ=á÷cV+v>…›ßYn}gaþ!øã‹è÷Höß,z¬Êì6bp&ŸÂÏ`ކ«ú,úå7Ëïv›gPßï}@YæïAÈðµNüÑ?ñ{ôDÙÿÿkºÙä''çóp>ãúÈýŒ‡ç#¯ÜÒÿ<ü?VŠü8% ` …44: endstream endobj 196 0 obj <>stream H‰T”AoÓ@Fïù{,B(ޙuÜHQ$hAÊ¡àî؛*q"'9ôßã7³Tpèjòy×»ï­;ó‡Íãf8\ÃüÛxê¶ùö‡¡óåt»vùå0„(¡?t×òËÆî؞Ã|Z¼}½\óq3ìOaµšÍ¿O/×ñ5Ü=nž?<åþp;¾¯Þ…ù×±Ïãax w?âÏ_S°½Ï¿ó1×P…õ:ôy?›?<µççö˜Ãüßåö,–O}¾œÛ.íð’êŠë°JËuÈCÿÿ³YSù’ÝÞû\*©ÖS Ô6Té‘@©m¨‘ Q'>ÔÔµ Á‚Ú†ª‚†ºñ_î©ï}Ƃ`I½ô5AKÝú%ØQï|†-é¨;?©-é©{_’2uövô=õÞß±œ‚XMµ SÀ.Ñ}4øˆ¨ˆî£a—ˆŠè>j[‚ŠX|Ü "ºy @E,>> "HŽ¨ˆîc±ˆŠè>ŽQÝǸˆŠè>jPÝGcp¨ˆîcaç@E,>> "ºá*â>ïTHñÁÝ *¤|à*Ä},‚ q5,‚ q5 â>’m‹ q5Öâ>jÛâ>’¨÷‘lTˆã+Ærq|ź@.Ÿ¯P Ço¸9…\_SÈÕñ•ƒ)äêø ‹B®§ ¹:¾r/ ¹:­Ø.€ªÓ*_²ªN›, TV¹TVÁWhÕo?ÙÁ ×òß`ÛB®åöí`kÁ·s@®ŽŸø>äÉñkΑ¬“”î m‚<9~Í;ä6H-€<|ÀOŸa»@žÊes/ òT>~ OŽ?}&³©ýmX´4úì[Wìnã85LkÆÖ+錇!¿õëóéL#äoöG€ ¾Y endstream endobj 197 0 obj <>stream H‰ŒUTçžq™™å5,˜Ùà.̬Z‚¶*±$µˆZ@ƒ$! °++Ëc ¢ÄcŠø ƒ¢  EPÁƒ‚Vã«EE­!©¶%MIL½C/¶ýÔ¤§í9={fþÝÿ{ï÷}÷ñӔÍ(Š¦iHHðüy^sƒB¦Ì±˜Êž¿ìDÉzZv%»«ä×lPï ês°‘Ý´Èaœ›ÍÆ¿2âúŸ……#oâ5á›œ[ÜFÏw¡T4“Te˜›i_i˜kÊHLHñ5ø›ãLéÖ)Á±)†P‹Å<Ù0ÍÇgÆO ¡™qæȕ&£!.Û0ߒb]¼Ò’jJ±šÒSb­‰–”Xóð¶òÒMfSl†É0mÆKÄd¥(š3PôdÞ_AÇj³iš¢)ʖ¦yjœ–ò¥©9ZjMÍ#œ)Š£B¨bª†ê îPý´/Mŏ uRå¨òVUÙÐ66Q6Ìd&9ÎÜe#ÙÍìAö6gËý„‹æ¶¨yõ{ê>Û©¶'moÛ¹ØÍ°K³ÛowÑ~ºý6û>?‡‡ëŽós+ïñüt~'Ó)Ø©R£ÒÌÐ|¦¹âlçìåë¼Ï¹Cæñ!ô‚VGó„Œòœâ5GÔíÛXY¯“ý¸úO*‹ö‰%Gö——¿Ù皔”l¶ÕÖø‚èÝP ³-º,^,3֘k“ÔÄ 8Ãë*Ø ¢ rM§­'DkCruR­··kyÆÞu%)ê¢ìO,&ݐgÚhù([\“’³.#ãKo×Úښê²uىm§›t<Ö]‡ñ*H Çã%ŽG7ÈGú"tªdd àˆèHö« Áƒ¾ž*X¥ôD²é-{ VȳXÿ|€žåóÁV^¶t;hÁŸ°•s N€6Ü&õ Õg£›ˆmº Ì5¨ÿÚä·v‹°heBxxBÝ%Z¸KuÇ[[­X$ò…¥ƒY4lQ<ñÚÁ(Ôr8]4p0\˜¡_HB®&!áÊ©õZ°ÅJ"a-söBÅñ:xmÚ=tA~ò[¨AËÞh:ØØ^°$i}fšYÄýx™A[NAÀ@ â W¹úqgÃ+ÄæCǚîèÀaêï‰#‡É³qtâéü¶ºš³úææE©Æ…Òjdö³WꌡâW.9re“„Z=·j=ðOoÂ8‰pºNr¡uœUòa:ãôä @Îap‹Cdu‚¦‰à<0‚®F‘·-Ý v0G¸ò„k¹×wˆGR¢÷‡ê#ã³³WK0N‚íÐCÁž«Ü]^Õ¦ï*ß'z£Éj•Ö®ý /]ÿ^ZMGžnûÒ¢¥M1jsõù´[ú[­‡kj¤sç~ÓÑ«h ê³è3$—‡µ³ ®Sïy­Y½)oÐ<õ ìd’ƒ-‹‚u8¶ß\À¥ÿHZ7AFӒ%Æú«WêÛڏÇ-TR*w- QɅò@ÀlЀ „r¸vè cÙËF‰¿H‰_ ñB_x³ñ°Xw¨©¹G.wÐí'ý]f7EÕ¥‹Æ´ˆ¨7u(~û+Å··AÑ „¥+Láá¦ús­õ ­­Çáb¶a˗‡…-olool"OL˜‚ öÎF´õ%é\y£ c½”rñòAº>ñë/Ù¿ug‰ˆØ¬ /èdj>¯¸ô¹î%ç°'»Îm ¦ ‘Ǥ{À‰tÐÁCùP."Ž,¯¾ó=…¥#Ŝ˜E:jqÏ`ƒ4‹Ÿ>b`ÛHÊv°§HõûÁÇÎcÿ Ÿ2|!‘.€L„™ ¡‚@RÉý+ü9ìôòR±®ä\ë=ð¾wQ±áy´²0úq7Œ‘ÐÎ˒’BEÒõ3Á½X›´L*Âf!rUüB'¿Ø®*c¤Äÿ64r* qQqßDzï~˜3Oo2—eI©U¹GÁ]VT‰e¥ÕÅõú›u1ïKŠ@žéã{pŒþ­–ˆ) `ëttÒ¡Ó¦éÝbDËË]=¸~ߞ‡$þkÂG6¾à’«ûPx¶ë/³zÅæ¨Àþz,"$ŠØ[×47K½½¹OŸéPÒ"õqxZ²˜’‘œ©'¿gÏÔ䤔K‡“·G#¥ãüÉ3kÄ·J>« >${GÉz”ì?ÍPâó(Ž¯$uppX֗GåGÂȟԩÿQ~Næزe`'ˆ*¹NOñ ªáõTnņdkš˜nM̉}¥TވR;kG”Ú[¯ÿÝɁŸI``Áaõ/€Bý¬·ÿ—T=×^¼ µœÛwù;Nk5)­¦¬aÅò¸ß(“RÂ&̇&”†A·B>¶’‰]42QV>|L!®d÷1™H­Šy¬ät”†ÌœOLü¯ßÏ,)³Š?›Ê,ik˺C2öašÄ÷ƒ«ÁIZÜ!ûÃz¨cð-·c]/B'qOÈàZ€w~’ÜG#6ò)EÿùÑØúʹxˆK³‚Ν÷‡‘Ýo²7îXÆü‰7(c†¼‰¥ç+K(U,ÕüȽ‰Çä@5ÃvA, bø?*dr¯@&xËWÝbKDH¥¯Þ÷¿JÙr_¿³²¥EêîÞü8 {nRê*њeÎ1éMÉ{G²[ûãì֐ìÖWçXK¥ŠU»’Ð]Ç_%ÛBvé‹"ÿPñX^GîZïœ$â‘aـ;“¾ G‰Dz'ÞH:RKŒ´l׉øw$þþù¦QédN_Ý|ï™îÿ$ÔqfÏáR×Bf¦¬6ý‹ñjŠê¼Â¹÷B$×V¼‹ÙÛÜ+ÅdÌ`4šÅ)TŠ¢bx³

5. [PDF] Mangroves of Western and Central Africa

  • They are variously described as coastal woodland, tidal forest and mangrove forest and ... They provide these areas with essential organic nutrients as well as ...

  • %PDF-1.6 %âãÏÓ 557 0 obj <> endobj 586 0 obj <>/Filter/FlateDecode/ID[<9F5EB5411BA8EDD9BBBE38FA3A5C35D0><970C2EBDAF25F94F91171CF26AA179EB>]/Index[557 49]/Info 556 0 R/Length 141/Prev 2014911/Root 558 0 R/Size 606/Type/XRef/W[1 3 1]>>stream hÞbbd```b``[ "Ó@$ÃQÉ>DŠ]‘B Ra-ˆ”- “þ R~&˜­"e^IF™W ¶ÔB)wDrçƒH–½`ó[A$S ˆd "í­@dÎ%^¿`[˜@ì½`7pù‚]Ö+ $ÿ®\ÇÀÄÈÀ´ìNFš“ÿ¾¿0 ¥e endstream endobj startxref 0 %%EOF 605 0 obj <>stream hÞÜUýKwîr¹&²dw©6™ºLãZã`[:cIöšÄØ)Cºæ‡*‘J¶¬‹`×*"—J\*v”bKÀnFíh;͚”EË ë*[™ë^Ätk&ì—aÖÁžï]^¬íþî¹çíóy>Ï÷Ž ( è  ÐAá§X¼T© /]S (• d=à±C¬r XÀ>D€ð›eƒ5œV<#Ü-*=¢ºÑ±·ûÙo—ÆCî%nÒ÷B⋝.<½=´#hñ¦-–ý_­U4œe«˜7öìhyå³V=óÞÐßc—ùÆI±á‘‹þ­ï7íw›™¦ëÚ!KÕ÷?Ÿ“§{è/µ6ü‡·ÁªÔ½0pX'N2 ªòö§Ó—\ÌklIP—<_©øˆíå¬Å‰.¦É0p×0’¢˜ð¶×ÅßE¹¯wXš,ú¥{Þ|³“ûE©t>g ÏrÇoç>¿rýòDbör$OÆ£‰øtB¶×¢‰sÉ£ñx2JGŽ\ғ3,¢TÏWôÍí g~réXõ öƒQ­ª-"ú{.Œåœõz›µÔ¨¾*HaX“Ât·McOe3u)¿Æzæ°ÂXX\é™sÆlt¿¾9ˆ¶ÊîêEté]}6M>ƒÚ-£áoã¤¢û<ކ$V¹a‰Ï,ô¡SÈ+ºDŤ*ò÷¡­¾zLßýê»+Ø&ë<¦of…õÚ\Ũל1¢ÖúC8N$jQ3aV87QÉ»[Kiœ~8³˜§Â¤¼&Z^EI¡ÌB?—ÝE¦ÏlÐ 6<ü:xžØ,­³Ì-û TŽúõõ¡¶mh7iÈ­œUX?Ñ2U·zðTÐ_ä½3øê$6לyLs¶Tqz×¹Stð-V˜Òz:{k1»+zk>V3pz5}™[¦v=h¶wüWu3•½ýC’ÌMÙ?9XïÌó#—ŠÚ›I©•äG¤d¯­Ó*½1ýt·[" ‰D ¾©¾£³>æX?z|­@²ª“/Bñµûˆ¼ Š:Ö¨´Ô6Ÿ_öI‰'… ¦Z‰G ÚTe#°}Y˜Ò#ðō¢3ˆ›@(Å»%v)d%J>Ÿ¼A7[4E²oB5GL›îÇRiڃ|9DaéYŸ_V£*ܤçbÆÇæùŸý¯âñ´ƒñõaܱ¯éI| ¸©òV‰Žo5®–Ï–=~³¼­ìɲ톟Œ[Õ3ô:¤à<óݡßÑ4W=ñRÔåzùÃNø]=_;`¾æŽ3-° ! Ëêí¶Ü· €qÖ }¤€^Îgßã'ÊY8…· ¯ü˜ýW€ N³& endstream endobj 558 0 obj <> endobj 559 0 obj <> endobj 560 0 obj <>stream hÞ´WmSÛ8þýú؛·–dÙòL‡™HÛ Gè˕òA±•Ä­c¿P诿•d'!¥ôæb¯V«õêÑ!ñˆ’PJñŸ…DDñý ï”øõ#ÂÇ_ÄIà™±O‚À܉¨± ŽBHóŒFÆ}c&¥Àuá¾Z< Œp)KNxä¡Oüñˆ òú5z/áXg7ÞÅ/sòÎqâ0‹$Íç(ž †ƒ"îDp††çûû0,òçízÁ=£…Ïj0Åu&Æ(ÕYR]^íï£i¿ÈŠr²R±6ƒ*°X˜eýJZ<œãÃÛúhR«ÚXM˜EÈXM¸EÉɾEê^(CfQ2óCߢbE‡³<+‹x¢ëK³-¸Ð·5Œ–j®Ü­eVº¬S]¡ÃqŸZ›qŸYÌ-ŽÎç§ÓéW› FKjÚa1Zba'ÔÓV6g­Œ‰ y+#ÒoåeÑÁx £~ÿ@U:AvåÕ%LôJ•ªN‹2ëÐDëð :=#3•U…1¡0éµÃɘxzƒ‹»•Þ ÅÊØãÂÅuÙ

6. [PDF] Unasylva - No. 139 - Mangroves: What are they worth?

  • Sep 24, 2012 · In. Peninsular Malaysia, the best grounds are found in the lower intertidal zone, inshore of the ... Most of these forests are found along the ...

  • %PDF-1.6 %âãÏÓ 179 0 obj <>stream hބÔϊƒ0ðW™7ˆ“P„Å^q)Ú[ك¸¡Ú*i ۷ߘº—-~{òÏ7¿$è0†â„LN*Üp$±”š6QûÛ­é'*BU+ê¹r¾ÙõÎ^ýÞYȟ7öÛ×öAlÄþ1YÑywbҎ£/Ë°l=ï™xíÄvBÌ+ÑM_îÍyQ¡â‘Be!kª÷-%bw¤\E7iª6ʘ2LŸ6…6…VC«¡Í Íeñz¼èëkƒµÁºÀºÀZa ÿ4/ º¦WãEK¬%ÖøäüÏÉS¬S¬5ÖkÜkŒ{q¯1îµµ—ø3̑ßÁt$ÅËH óã4œísâ$)JIϵ굶³ƒ?×²ü` \&K endstream endobj 180 0 obj <>stream hÞ䐻 1[yàýù#(€ôt%!úgß íŒd¯GAƒ(dæ0¨9Ä¡¾ íi:Òt¥MXK[0Íc f*°HSXO3Øä ØJ8v¸¦ ¸§Mx¤-øplÛåöz<÷êh¸CXBP¶Œ5„ê!‹M„Á*Âd¡Êjac\‘°¯H™Xd¬,ªÐ¢`kQgn¿€t\¯»O|†4ý9ÏcÇ÷­¿Ó· ;y endstream endobj 181 0 obj <>stream hތOoÂ0ÅýQ|„KÓ. NÀNû'bqè!@¥(EM âËo{M‚ä"ÛÏ~?;]ŽXª{V ‚b§Üï‹QQYϱxÌKçC?â©xÊ®ŠÙi¯ÅkåMnµ.&y1©kSS¼e¥ÆL·!äÞèÖ×7m(£‚îðJÚ¶k¬_%2Ì}|.{i̶2f}†œyŸpÝçdtt"CdL¼—°„IRBé¯öŒ®¥-˜Ôð<@]кG–¡£= Ó1œY×Ã?õÔ¿øì >ãXº endstream endobj 182 0 obj <>stream hÞÜXmoÚ0þ+÷š;¿[ª¶v­Ð4 >L­ÐÄh4uZI‚Ôýû“ƒÚlc£åCâÇöùyîlր  ¬¯ùíÁð‘„ʁw@Ê#f`•gÀ Phˆ T ”åNDÊ»Ô˂FEÀ½5¡æ/ŠAà/¤AÝÈðWÇæˆ)µ80dxd £âÆÄ i㍁ããì¤XÌ* ½¿¹ž_±„‹Ú`]b]g£wy6˜|Íç½wz3›Õ´J_yˆY•ÏR]×õó²XÜñ´êJÿšÁ²ùõÍämq…Géq¤øí#¿ÇÙàèÙFÉCA3ì"Ÿ‹ršÏë‰~/ÊáÝdš§Ê;bc}HàI »„L1 4Ì_ m!«â².5•^/{w_«I•¬œ³kåóä¶ÑˆÛš~£{ÜdËA G@hÀ¡@Ë|:pKsƒIUååŒ` i-‹é0¯®²ÁéY6Ê﫬ËâŸ4Eœ}úøå[>Móéßrä5“èßr„ Q +Y jl°•aU.¦U£ø°uòC‡°îã÷äc£鈕ΪÕY?ÐySÑñ#hC€–²ÿÿ”»yRË·â©:yÒ^yÒg„ „ÒŽ}«Ÿnï׃ۇC nó´ ´Ü— ÙY°Ë!ò/4P­ô| l—jSý 4Ø.\×â'C¯…ôó˜ún¦x°!:IσqoìXÌjcK'µ³=]²á”±à#w§dÞ6¹<­’y/e2J©›ä~yd5sXÏô×FÔõ4Ó_œº0MÑüUðî÷ƒ­|¤7}d^¶[‘Ô™V’R{`½ëuHª›½T¯þuMº›5¾T¯nÀ¦“*ÅÃ]¶öÉ­U®IÒÍL½…’’RKi¤”û’-˜dÆgm¹+}øèrç7š³í¾D «k¥mï‡EâŸßî¶×;·7´–îþ` w€ó endstream endobj 183 0 obj <>stream hÞ´—Ín1ǏáÌÉHm/»{üUU‘ZUSÔCÛCh6m Ý É¶Qá€xރ'àM8"<öÒVBÊÇ:9Äã͎ãŸÿ'gR0Èœbà$sšIi™3­fÎ2†9Ç,w8÷/ÈPþû¡B0k õƒý÷èǐVŽÃÀ î{+9ùIh&ÔL€Òäî;Fú2!= `ƒbB§ÞGê&¬ôΒûŽ ¡˜ä@É$?¿ð ’àW‚D‹L*M£„ïx–|׺ù»ƒ×ôÙ¼¨ëÑvžO§ÓlЫ²j|žou:ù^7xuóÃÛQ‘ïUã~1Ώ§Wáá˜{ýøi~PœÕÇh3Ό­¡FóÌ¿ë^¿¯iø›aù!þÐnYVu§sìHý>‰ÆFã‚!ᣲ§‹, _]_e=i±‹Ä2#™aµ,4¨ÆŤßæEÙF]„Eí[2SÌ(•ÌäE£üp''á<»¨¯–'4x ±ZÀAcÚà=!bÂËÞMor6ŽêíjT”Gò_MO67D›ßÝ~Q÷†sÒµÛ8Ùj±Ù:ji›Í&R³R-‹ÆD-Ÿ½¨Êšè—Gá”hTtVµÚÀzPE@=¬Foû½ó¢kÑÈ*¯“•g—£óå ¥#4A’¢£•RÍI¢13º¥ãŠy9µB@`_“  ˆ@hh))!‰;KP¯ËÓMá•îîEàë:Líù ¤'_Qßιå©æ w7º4E“ˆUÌO"Я)•ÊÀx+¡ƒ5ÔlI±‘T¥IšDÌIÌæ¢Âõ(Š |ÚP‚W!7i+æ(*šBS&û$bE1êM­ízU)iÔÄö.Rg+Ëzú?’¤h±Ç^…te:ö/7}}üûËóÏߞþúñÿ<ù~_pø¹_U‡Õ2,ûmoÿJÕV‘Xl…J{æ>Hh"[¤¦ß•T_=_óØÿ 0 {$z} endstream endobj 184 0 obj <>stream hÞìXmk7þ+ú^Ê­ÞF„@’&´%-%v›¥.öQØwáìPòï;Ïèå´{{±¹”6 ?–NÒ̎fžiǓ”JkòÊGe,哲Þ;EƒrÁEEš‡† È¨0„AEÖԓ'‹çËÛÕ«íænq¾¾YÝþ¼úëÍöf¹ùåì§óÅËÍÅör½ùsñv½y¶¹]·ß¯Ö»Û»W˝ýnu{±[¿¿Ûî%6çÍâõ²,0Þ/Î>¼»ûø~µ8ß}XKÿä¡oחwW·¿‡Õ ãe­UnˆÊƒ òoÌé˜ç ™#×Ö£5a/s°VÖ³Ž çœJF«`Œ"Ž }ÍAó$}@lˆ©ÍÅÒê:È¢ù:—Xíc\ìfd¿.Ø%}^‡~߶=÷¶—~˜Ùwµ±÷‰ØWúÐé؟}n½c{|‘->­ëô0QœxwøÝCBvä÷Òu'b}Ñ,‚˜H%Z¸ÔçG¡oºÇBÖY[§Fƒ:&&c̱n¬-ë=¯uÞ6Ãd\·ø=\¢)°Q¡o´GÓYpL^ÜOÇõá-43À³çÆ+zZ…K÷½<}Ú'£ßV»Ëåfùíóíõåiy(ž’‡„)_ð?덃ƒŠÈLm³„ xÂY&°ÀræNj†–0 <€Ž ÒA%0‰Yp’ÇI’_Áh1‹#ži99f”÷¼ŽŸÉ¿@ѱ°¯.Z>‚†,?CsŸõjm¢tQʛÑhënâàRâñ˜[BEvKØ )^bY6 }=𹈠Š!0\Â1ÉÉ©slU PÆð8/ó{oö‚·ežuêÁ]«C²?Hkm}¶;™‘¸ŒÅ&‰0£OÃ>Ñ0P̃QìÊƒiت±{QÜ ãA _1:Ê=! DÆ˨è*s×šã´ÿ&f ‡ä„B‹B‹ N¥Å¨Œk3öě6³`zÐ1SƒÜpZ iϊ „ï3˜!òz’±Î—W|q:-W…¯2Wi+w¸%æ‰_ |x€gÑ 0ŽyËo¬%›ÛhørÖ;tTð¥W¥Ã„Ã(Û@rïb^Ôà• œ tº8¼!ÏÜ9ÔhÉà†5L#–ü&ÉÁZxËvÌ6£­{¾“{ܳ´´Þ°½ 'ú¸¬¾+±ž~tƒŒK÷—xìÓ:™;ñþ'/ýz§ÂóÑÊþ9ýâùhä–g»£#ßi›òæ`8‚#‚¼!´UØÈyPPùòã†åŠ.Ö7dbܔ²ã@ Œ‰ñ!ó²2[ÐeMvÊ?p ñŸCBþàí:€=(ÅƇ˜Ü‚=„øãcOâ?ƒÈqNAøÐ!¥±ë=2Ï2z€Â¹ç/U§å(ú*s”çw–Ï+ǔü^’ņ“Ìe|vL`¥ü»¶ªè¨ðÎg+™%’°-_šø ¸@189“_<Ñùeˆ>³+à°âl)-gÑ£Ùxk¤Ÿù"k/m5¢ÒDv46gF´‰Ä3è“|-âðÄmÂH?…x¼¸nÑYÐd×TÌŬ™ ߞÐê²íٔ¢Ý»²Yg"UZ0¥®© &,Ì»q³Hh‘…Ó‰•‰)`šôqeí ¼fȘABÂÇ ˜hð árT91Ä}kG /2ßÌ$S=Û­—קV üI(?þ$ÿ·Q?£­À$¨Ÿþ:uŸûøŠ®UpÚçw‘¹m=ëhð 8ÈЕŸZ9 Ÿ(÷ FR¾ók™)ÖºC(ÇdY×äJ?•:BïëR‚*Efh)ôTƒ[6”rÚØËÔN“›” r-‡H¹…¤PYŸõV=­â4À.ڏi ªšØâUT·T+kIAª«RAmêAÔh_ù’ï¿P슮yoöE¨®0$÷Æ#ò%€®A K5Hä¯Ò®@Y1­µÊÒL‘Ɔ~MϲŒc´Å«Ð³bJç½ì˜ÙgT½U(ICRƒ:5¹ÿk.’:jp£ H °ñËE¡].B€Î²9’LSQ­zKáé´TÔWÃk.¬o`%Km1^˯ý^ÑJ®ž–hcɉ½½†\Ž6¥,}ŠºvJ*šTf¤¢¢ïÁ©(~f*êÿ©Tt¬^ýe¤¢Oœ¬S6ô¨©è`|϶ÙTôÃÝòz}qj2²£Ç‹ÑãÅèñbô٣Ͼùâõ7goÞm¯[2boI†Ùç «§I(NnD¼¢å þ§çÛ_7kÖ·R1Èd$G0ço ˆžÂ¹ endstream endobj 185 0 obj <>stream hÞtÐË Ã0àUþ Zó0ØkôԇºAÔ[÷/V¥Wé!Bä!c5pà¨#«ðÈÆS"õêìþ5Sp¡ˆÌñÎ$†HD{†”ÑW u®:zҢΠZ:a—óõvhO¯÷¶=€ú1a‚“w›`¹ƒýDô¨Ï­H–¥$íÏ^«HmIz––%c>!Z~Œê©–6 ÍßY$ߣîI

7. Ch11 - United Nations University

  • Mangrove vegetation is characteristic of sheltered coastlines in the tropics. Mangrove communities are extensive in protected shallow bays and estuaries, around ...

  • Contents - Previous - Next

8. [PDF] Strategies for Managing Mangrove Ecosystems

  • There are about 13,000 ha of this forest type in Ecuador. Basin mangroves are found in the interior of the coast adjacent to salt flats, and receive water.

  • %PDF-1.5 %âãÏÓ 183 0 obj <> endobj xref 183 26 0000000016 00000 n 0000001312 00000 n 0000000816 00000 n 0000001394 00000 n 0000001535 00000 n 0000001926 00000 n 0000001952 00000 n 0000002814 00000 n 0000003183 00000 n 0000003276 00000 n 0000004468 00000 n 0000004558 00000 n 0000004649 00000 n 0000005619 00000 n 0000006522 00000 n 0000007385 00000 n 0000008265 00000 n 0000009154 00000 n 0000010022 00000 n 0000010118 00000 n 0000010210 00000 n 0000010302 00000 n 0000010396 00000 n 0000011327 00000 n 0000012190 00000 n 0000066078 00000 n trailer <<91f08ccbd2229443b120797f2af0ebf5>]>> startxref 0 %%EOF 185 0 obj<>stream xÚb```¢&V¶hAd`a`bŽLè ÚŒ·ø ï”ïoZboþS¸ù¿ü˜ë³¸c-fjMžÐ»ûÔ¥…*šŸnÞ?½`ö»E¢ŽÂ‰ísnŸ ±ýϏ©JŽN!FNFÎ*F†..0c3v6«›cWɤ’¤ê3×iª×uýˆ­Íb>·M²îžîw϶–‰ûGÁb÷N1Ÿ•ÂªgçÚµj•d]Ywtv¹Þ­ÃUÿxf&Ÿ_ì—;kkCZZGƒ #CCXB‚Hƒ[ƒX‚ƒ³SƒBÈÏiŒ¢ÊŒ‚l ”z èüH©vq ¹`I103ÙÌ.ŒáÎ,}ŽÌ˜s™]™Ã˜ã™½Üœ€Ð…¹“ÙõRбvÎön,MŒ=Ž@>PPˆñ€jÁ´#˜å ”q©fðË9B弡<ˆ<Ä{¨. ’µ…êu‚«épƒª´‡šã dä vƒD=,t°žAju8E± i&æ P*—ï endstream endobj 184 0 obj<> endobj 186 0 obj<>/Font<>>>/DA(/Helv 0 Tf 0 g )>> endobj 187 0 obj<>/XObject<>/ProcSet[/PDF/Text/ImageB]>>>> endobj 188 0 obj[189 0 R] endobj 189 0 obj<

9. [PDF] Mangroves and people

  • ''In these works [building and repairing] they employ great quan- tities of ... impacted habitat was that of high tidal flats or salt flats (albina in local ...

  • %PDF-1.7 %âãÏÓ 730 0 obj <> endobj xref 730 133 0000000016 00000 n 0000003854 00000 n 0000004090 00000 n 0000004117 00000 n 0000004171 00000 n 0000004207 00000 n 0000004729 00000 n 0000004851 00000 n 0000004975 00000 n 0000005171 00000 n 0000005295 00000 n 0000005414 00000 n 0000005532 00000 n 0000005647 00000 n 0000005766 00000 n 0000005885 00000 n 0000006004 00000 n 0000006123 00000 n 0000006246 00000 n 0000006370 00000 n 0000006494 00000 n 0000006616 00000 n 0000006738 00000 n 0000006865 00000 n 0000007023 00000 n 0000007166 00000 n 0000007328 00000 n 0000007497 00000 n 0000007649 00000 n 0000007729 00000 n 0000007809 00000 n 0000007890 00000 n 0000007970 00000 n 0000008050 00000 n 0000008129 00000 n 0000008209 00000 n 0000008290 00000 n 0000008369 00000 n 0000008449 00000 n 0000008530 00000 n 0000008610 00000 n 0000008690 00000 n 0000008769 00000 n 0000008850 00000 n 0000008930 00000 n 0000009010 00000 n 0000009090 00000 n 0000009170 00000 n 0000009251 00000 n 0000009331 00000 n 0000009411 00000 n 0000009490 00000 n 0000009569 00000 n 0000009647 00000 n 0000009726 00000 n 0000009804 00000 n 0000009882 00000 n 0000009961 00000 n 0000010040 00000 n 0000010117 00000 n 0000010197 00000 n 0000010277 00000 n 0000010357 00000 n 0000010437 00000 n 0000010517 00000 n 0000010597 00000 n 0000010677 00000 n 0000010758 00000 n 0000010838 00000 n 0000010918 00000 n 0000010999 00000 n 0000011079 00000 n 0000011350 00000 n 0000012153 00000 n 0000012812 00000 n 0000012915 00000 n 0000014070 00000 n 0000014238 00000 n 0000015172 00000 n 0000015886 00000 n 0000016106 00000 n 0000016575 00000 n 0000017683 00000 n 0000019061 00000 n 0000019207 00000 n 0000019605 00000 n 0000019925 00000 n 0000020954 00000 n 0000021515 00000 n 0000022164 00000 n 0000022336 00000 n 0000022829 00000 n 0000023453 00000 n 0000024531 00000 n 0000031229 00000 n 0000036993 00000 n 0000040652 00000 n 0000044247 00000 n 0000048891 00000 n 0000096147 00000 n 0000129857 00000 n 0000130315 00000 n 0000130512 00000 n 0000130796 00000 n 0000130858 00000 n 0000132076 00000 n 0000132289 00000 n 0000132586 00000 n 0000132777 00000 n 0000132833 00000 n 0000133371 00000 n 0000133493 00000 n 0000156825 00000 n 0000156864 00000 n 0000157390 00000 n 0000157499 00000 n 0000213603 00000 n 0000213642 00000 n 0000213700 00000 n 0000214004 00000 n 0000214123 00000 n 0000214236 00000 n 0000214408 00000 n 0000214546 00000 n 0000214733 00000 n 0000214925 00000 n 0000215122 00000 n 0000215283 00000 n 0000215511 00000 n 0000215719 00000 n 0000215878 00000 n 0000003679 00000 n 0000003018 00000 n trailer <<6C83D48D432E2C46B4A31FC1DD396ABE>]>> startxref 0 %%EOF 862 0 obj <>stream xÚb``àa`àMe`g`úà € "l@QŽs=VJËù¤Ük?ño~×x.@FôÔJA©¦=ÄKO‰ž`rÀCd§òS•³Ÿ½ˆÊ×{ý¦t^¶üZpwst¹Þ—þ8“¾Ë˂—\œ»{zòõ^«”®’]ŸSŽÝ=½¨R©äTÉýíEoª>®¼4ñöñù±Ï}b¶Ý=½ñõ±Q./§¼Ô [éÕ]®whJWÉr¿Y`¹¹Fsõívÿ˜xSË»\ïøz©¹šÂ˔]ZYÁ6€lçŸ6s‰ßŒ’§»•T\Ò2:РбÆ.HÈ s;:À¾I3…- êÓ``[Ä°0Ó€?0˜xԞåuq5Ø i0ÉÉøž!ž!‘a%Ç0D3D IL Š$åâRšJÚújLÐLš€Y&H|¬Â„ÁŒÁl#¸<²*ù…™ƒ©‚Á‡%ƒ¡—¹›i=ÃAÆ],–¬îåŒÅŒªÌ¯˜Ä˜ò&2^b e‘–âËä3àý Ĺ£¶y2ãz†UŒŒÊ,Ëv1ò1,aeüÏÍÉÀÃø™!è6/0M63ÌgXÎàÍ ÀPÏ(À°3í0û30Û2ø8Ӂ¡%Æ öÞÈob`PýäÏ`Pµò™€ØH‰2¨½^d3õNƒ™Â4AÝøD”© À m†Ív endstream endobj 861 0 obj <>/Size 730/Type/XRef>>stream xÚbbbe`b```%ð ƒX Ê endstream endobj 731 0 obj <> endobj 732 0 obj [733 0 R] endobj 733 0 obj <

10. COASTAL/MARINE ECOSYSTEMS - Kaskazi Environmental Alliance

  • Mangrove forests literally live in two worlds at once. Growing in the intertidal areas and estuary mouths between land and sea, mangroves are comprised of salt- ...

  • Coastal and Marine Ecosystems of East Africa

COASTAL/MARINE ECOSYSTEMS - Kaskazi Environmental Alliance

11. [PDF] James Denny Ward - USDA Forest Service

  • Nov 10, 1997 · ... intertidal coastal flats where they are generally subject to tidal over wash twice daily. ... These mapping techniques can be used for areas that ...

  • %PDF-1.2 %âãÏÓ 10 0 obj << /Length 11 0 R /Filter /FlateDecode >> stream H‰½UÛn›@ýþaS)lvga‰› c‡]7ÏiJÚTª«’ªUþ¾{ø;öC[Y²ÌìaΙ33ëkHžè< `?ýg®J MðÁA߃ýþ ðô× ÐÁ0I\ ŒqóÐwðna ÁµÏ}ên 6ÕÅã˜ä|I¤KÄÈá<þÜ'ÚH¸OAÒĝ]•XdÕ8á„%2ÞÖM!d1q±|Œ…hà!d'*Ä6Ԉg#o¡,M}V]LfM5ÉjȔ*”š†¬ÉA­–ËE«¡\´>Gæ,Ìa°ó•¶GVÃF‰%˜p¤”{ø

12. [PDF] Ecology and Management' of - IUCN Portal

  • In coastal areas, tides determine the zonation of plant and animal communities found ... macrofauna in mangroves with those in mud flats and beaches and found ...

  • %PDF-1.3 %âãÏÓ 21320 0 obj <> endobj 21441 0 obj <>/Filter/FlateDecode/ID[<78AB5678D01797B474DB64C386F5E85A>]/Index[21320 598]/Info 21319 0 R/Length 268/Prev 20286449/Root 21321 0 R/Size 21918/Type/XRef/W[1 2 1]>>stream hÞì‘ÁJQ†ï¹Š‚ ¶jåÆGÄ70ƒ$‰ !LEq£ØjlÕsø®Œ–‰»ÃK¡Mµ²ûÍ0CeÍ2¸›ÿ?ÿÜ;çÜ£E(­rs¹[ÕÖ ¬¯œhÐ]l7ªœoÚQû͉¿~㿟ҽ“‹‡‚AbŠº4з¨#ÔuJ`@‰¬Aú†ZÞ 9¢öˆ¥¦]ԜbÏPýà*]CõÀ ¨R;F]ƒ&¶rÃ^ÂN5Ÿè5x þ&e¬7e\aïÂaV¨"xڕ7!õ^£Î0© x‡`i0+-4©”Ä€¼Æ=añß!3ûvçvçvç_°[<<}0 £b?, endstream endobj startxref 0 %%EOF 21917 0 obj <>stream hÞìV{TSuÿ탄l¤¨ÃM0| È#³aLœ8AÑM,e“-wÇÆeàƝäRP…H*Á©$åMP3ù¶ãêxz˜–Õ÷nC(=ýß9Ý{ïïóù}¾ýÎîEqòxŒ¹‹üÐÐå‡hÈёÇö8Es?Å6=âìmáLRØJ&œ-kÙXg]ÕV¦hk¬m«Ž47ÛW‰+ÙëìYó*ƒòó¼s•Á‹,VPd–ŒÌĊ±ûM}s­T™¼ãžÀƋ£ÜåÏ­†ív^{åó ˼öŠ0…Î~ϯ"l©nÿª”ʍô0V!·Ï™c%«k¬iu›V}fs×´ÙûÎWò6+¹˜+:pOä󚒁.¼7uêÛ§ˆÕ;n²_ê`^;pD±46Èd^¹-„s=}Á¨@éqû÷7câ»J¨… ¿'r÷™<ÆË}“B¼ÙÓëÅ÷³,͸$Í¿¶xý£—Úßé¤^_°ÖK­ñ9´";÷€éÒmgñü=3ÇìzUû-Gヲß|æ˜\ý0SþÁñu˜xÍl[WØÿÝÚ¨ÓX[_-Y‘úùŒØ̸¾ ½ŠÝÉ ‹jùœuyøúÀ ’Ö"å;攂¬Ç»h‘3Y­>eœ÷§yÉúw_¼Ì-Ìl[ã±_Ö¹õ$-)¡]ãz¯ü*¢ô&äŽÌŒ¬â¼ßf8'á•ÔßÞP&)”F—ø4ývbÙtÁWn':҄ žþË%¾øÃâégïšSvœT””ïLÝÈ86«7­ï慒}¯Ó—L”Ý/TÞ_ùh±öá)ÏÕÚÆÚ[õ“¸Sã3f†¼ÐŸ"_Äïrï¬Wr$ó+:^X~úElIzgaS{ÁþüŸJ%Â^øԾÆîÊôædª5²Õ5%,%ƒi뾸e|VÊ…â(ñËÁáâC~#Ê¿Ü!þá劁¹Žy3‘ƒÞf­n±ŠÔÑ!ÖæÑêéw¬¢2Ñë[Ú¸°XZPˆuÎ.«(«ãªcCÔ³ï–%Ž.›Û£lº[zøziÓu8«„r”Í5Õjr ÏÃ]>i’ N}A§Ç€Tv¾cƒ£áyαÈ1ày9Jið¬6( Ó;çNI¥¢µ˜ËépºÉ84âyÅÄ0XØíÔғ¬‘Z€ü{®6܅3¥bâÑ>c÷ðB©`Äpéå kX”CÈ'ýadØÿ"YÒA·úg—rÐ=ñÄóS2ē’럙K¹ÀàՕ"TÒu0žxÔós¸Š #´ÿõ 5gï8e®ƒ2La( '߅ Õ¹§h-ÉÏQf©p >çc,,c©*˜JqÇnŠVg©ùä¢VÊÄY¸Š‘/ą¸ÎÄ F0G8 Pç^Fn¢FªC“l†Zªb`8<ܝø*¾VE¡a,­Ô9Sá<b‚"™â,u4Ä·€é‚Ow ƒS@ =z ÁÐÓÁvÞdX00 ¾š¯!½€7u Ð! Æ×@¦¤g– –Ü)°4R­T#ÅpÇ*Â*2q€²œØj. Bb0àd®ªh'TEÆEÁåƒbàѪÿß ÿ­7 B┩­Ëá\ ÍìøîxùÐ×#䎦 äÒi(=€ŠF t:bSà£d ié(4 ¡“ îNš‘æ¤ (FZ\ˆTkq˜æÑò‹Ç•¨Y!¾Srèlö¬†˜­“KƎßa1Ë8‚ûcü‰¾çn{Ç°û¿¼bú‘¹¹ÔìÁüéÍΤò|ŒFZÕ8Ó8FKZ|gãrjöHai(Î÷ø^|5ˆ™n£§óLž#ÄnÙþ‚Rz6¯ØôX€ž¾æ»S"|ÉI‹Ã܉¼ §<ÍHíN$úkm„dњúäŠÙ“èÉý£¶vþüô?¥½†O»E ëÜVÏï9½išy¾æ½7>Ô­nìYv­4'-+Õ§&ÊãöFßÜݐ‡f݋²n`~½åX¦pì^Åæ‚/tG¯ê>ºûѶw¿Ù[×4á²ôT¹ø‹Ø³KË=¹—U—덞ûþ”uÍSۅW:c¶ûÿŽ¨Ÿ×êGOï™]å»çÜ|Æä‰U^÷k#šÙoy_5]ïÿIø\ѮЌnÉ[ÏÄuϑ'dz‡Ö|mI¨­êª2|WÖpçíØñõ|´©(é_ÿ åv Cò¥ç15¿ÝɹFL¾=Pv¹ñVeB©G2DAIÜ}*èF‰ðæ:«F½ù¤®g)QD©s•2ú/ d›bN endstream endobj 21321 0 obj <> endobj 21322 0 obj <>/ProcSet 21451 0 R/XObject 21443 0 R>>/Rotate 0/Thumb 19974 0 R/Type/Page>> endobj 21323 0 obj <>stream q 594.72 0 0 13.92 0 827.76 cm /im1 Do endstream endobj 21324 0 obj <>stream Q q 594.72 0 0 13.92 0 813.84 cm /im2 Do endstream endobj 21325 0 obj <>stream Q q 594.72 0 0 13.92 0 799.92 cm /im3 Do endstream endobj 21326 0 obj <>stream Q q 594.72 0 0 13.92 0 786 cm /im4 Do endstream endobj 21327 0 obj <>stream Q q 594.72 0 0 13.92 0 772.08 cm /im5 Do endstream endobj 21328 0 obj <>stream Q q 594.72 0 0 13.92 0 758.16 cm /im6 Do endstream endobj 21329 0 obj <>stream Q q 594.72 0 0 13.92 0 744.24 cm /im7 Do endstream endobj 21330 0 obj <>stream Q q 594.72 0 0 13.92 0 730.32 cm /im8 Do endstream endobj 21331 0 obj <>stream Q q 594.72 0 0 13.92 0 716.4 cm /im9 Do endstream endobj 21332 0 obj <>stream Q q 594.72 0 0 13.92 0 702.48 cm /im10 Do endstream endobj 21333 0 obj <>stream Q q 594.72 0 0 13.92 0 688.56 cm /im11 Do endstream endobj 21334 0 obj <>stream Q q 594.72 0 0 13.92 0 674.64 cm /im12 Do endstream endobj 21335 0 obj <>stream Q q 594.72 0 0 13.92 0 660.72 cm /im13 Do endstream endobj 21336 0 obj <>stream Q q 594.72 0 0 13.92 0 646.8 cm /im14 Do endstream endobj 21337 0 obj <>stream Q q 594.72 0 0 13.92 0 632.88 cm /im15 Do endstream endobj 21338 0 obj <>stream Q q 594.72 0 0 13.92 0 618.96 cm /im16 Do endstream endobj 21339 0 obj <>stream Q q 594.72 0 0 13.92 0 605.04 cm /im17 Do endstream endobj 21340 0 obj <>stream Q q 594.72 0 0 13.92 0 591.12 cm /im18 Do endstream endobj 21341 0 obj <>stream Q q 594.72 0 0 13.92 0 577.2 cm /im19 Do endstream endobj 21342 0 obj <>stream Q q 594.72 0 0 13.92 0 563.28 cm /im20 Do endstream endobj 21343 0 obj <>stream Q q 594.72 0 0 13.92 0 549.36 cm /im21 Do endstream endobj 21344 0 obj <>stream Q q 594.72 0 0 13.92 0 535.44 cm /im22 Do endstream endobj 21345 0 obj <>stream Q q 594.72 0 0 13.92 0 521.52 cm /im23 Do endstream endobj 21346 0 obj <>stream Q q 594.72 0 0 13.92 0 507.6 cm /im24 Do endstream endobj 21347 0 obj <>stream Q q 594.72 0 0 13.92 0 493.68 cm /im25 Do endstream endobj 21348 0 obj <>stream Q q 594.72 0 0 13.92 0 479.76 cm /im26 Do endstream endobj 21349 0 obj <>stream Q q 594.72 0 0 13.92 0 465.84 cm /im27 Do endstream endobj 21350 0 obj <>stream Q q 594.72 0 0 13.92 0 451.92 cm /im28 Do endstream endobj 21351 0 obj <>stream Q q 594.72 0 0 13.92 0 438 cm /im29 Do endstream endobj 21352 0 obj <>stream Q q 594.72 0 0 13.92 0 424.08 cm /im30 Do endstream endobj 21353 0 obj <>stream Q q 594.72 0 0 13.92 0 410.16 cm /im31 Do endstream endobj 21354 0 obj <>stream Q q 594.72 0 0 13.92 0 396.24 cm /im32 Do endstream endobj 21355 0 obj <>stream Q q 594.72 0 0 13.92 0 382.32 cm /im33 Do endstream endobj 21356 0 obj <>stream Q q 594.72 0 0 13.92 0 368.4 cm /im34 Do endstream endobj 21357 0 obj <>stream Q q 594.72 0 0 13.92 0 354.48 cm /im35 Do endstream endobj 21358 0 obj <>stream Q q 594.72 0 0 13.92 0 340.56 cm /im36 Do endstream endobj 21359 0 obj <>stream Q q 594.72 0 0 13.92 0 326.64 cm /im37 Do endstream endobj 21360 0 obj <>stream Q q 594.72 0 0 13.92 0 312.72 cm /im38 Do endstream endobj 21361 0 obj <>stream Q q 594.72 0 0 13.92 0 298.8 cm /im39 Do endstream endobj 21362 0 obj <>stream Q q 594.72 0 0 13.92 0 284.88 cm /im40 Do endstream endobj 21363 0 obj <>stream Q q 594.72 0 0 13.92 0 270.96 cm /im41 Do endstream endobj 21364 0 obj <>stream Q q 594.72 0 0 13.92 0 257.04 cm /im42 Do endstream endobj 21365 0 obj <>stream Q q 594.72 0 0 13.92 0 243.12 cm /im43 Do endstream endobj 21366 0 obj <>stream Q q 594.72 0 0 13.92 0 229.2 cm /im44 Do endstream endobj 21367 0 obj <>stream Q q 594.72 0 0 13.92 0 215.28 cm /im45 Do endstream endobj 21368 0 obj <>stream Q q 594.72 0 0 13.92 0 201.36 cm /im46 Do endstream endobj 21369 0 obj <>stream Q q 594.72 0 0 13.92 0 187.44 cm /im47 Do endstream endobj 21370 0 obj <>stream Q q 594.72 0 0 13.92 0 173.52 cm /im48 Do endstream endobj 21371 0 obj <>stream Q q 594.72 0 0 13.92 0 159.6 cm /im49 Do endstream endobj 21372 0 obj <>stream Q q 594.72 0 0 13.92 0 145.68 cm /im50 Do endstream endobj 21373 0 obj <>stream Q q 594.72 0 0 13.92 0 131.76 cm /im51 Do endstream endobj 21374 0 obj <>stream Q q 594.72 0 0 13.92 0 117.84 cm /im52 Do endstream endobj 21375 0 obj <>stream Q q 594.72 0 0 13.92 0 103.92 cm /im53 Do endstream endobj 21376 0 obj <>stream Q q 594.72 0 0 13.92 0 90 cm /im54 Do endstream endobj 21377 0 obj <>stream Q q 594.72 0 0 13.92 0 76.08 cm /im55 Do endstream endobj 21378 0 obj <>stream Q q 594.72 0 0 13.92 0 62.16 cm /im56 Do endstream endobj 21379 0 obj <>stream Q q 594.72 0 0 13.92 0 48.24 cm /im57 Do endstream endobj 21380 0 obj <>stream Q q 594.72 0 0 13.92 0 34.32 cm /im58 Do endstream endobj 21381 0 obj <>stream Q q 594.72 0 0 13.92 0 20.4 cm /im59 Do endstream endobj 21382 0 obj <>stream Q q 594.72 0 0 13.44 0 6.96 cm /im60 Do endstream endobj 21383 0 obj <>stream H‰tÐÁjÃ0à'ð;üÇíՖ¬Æ¾Ž¶·9îº40¶Ò²±·Ÿš,ƒùևä'¸‡Æ…IZGJ@³sb÷?Ÿ©‡Û<˜IØê'çÉ{ɏ°¨¢?q·?Žocÿ…{4¯ÎÏB’-®y‡ÅÜXˆÓ,UÖ/µ¬TÔ¸PíðR21QL` ÛB²÷¬:·^™Pÿô>¶CÛwïÝpyfæ’ *øÏ8VÊ¿‹E¹‘K6r<•Lr¦Q­?òÿn6Õº›Ïé6_?Ý¹4÷û` Û¤V° endstream endobj 21384 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 672/Name/im1/Subtype/Image/Type/XObject/Width 3304>>stream & >°lÿÿÿÿ@\€ÐqÌå5ò– 9M"²c‘ŽC,r…™–9šVaÈø±ÏÄdq|PG$çs¹‡#Øs¹ÜÕÃ-ÊihC$+È(s¹‡<åsAlÙÅN9 àP¨C$4Æd D9îAÇ0悁Ì9w#ßRVÍ ra®Ð9‡)ÍÄà†H, d¡¤9 ±È`rsCŽMÌ9“sÁ^l* n Am²)ŽU“²¬‚Ø«9„”Œs¹ ä‡#ÐÀä#£˜s¹'/Filter/CCITTFaxDecode/Height 78/Length 121/Name/im10/Subtype/Image/Type/XObject/Width 3304>>stream & >°lÿþ@菧¾?4!ÿ h ϐ[QÈ-8øã:Td ]òpTÈƒhqü .ÇÈC0qÇòøþ@˜ƒäÀ †?¯ãùð3 aÿÿÿÿòàhÇÈD~=u6„qÿà endstream endobj 21386 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 156/Name/im11/Subtype/Image/Type/XObject/Width 3304>>stream & >°lä ¤?ä @¬9P.ù@VòàhÇü€ø Q鎞@м}al,r€¤>?3ñȁÀä ÇûÇüü+ü€øPù@7q×­=ȘýŽÖÿåŽW2†Áøˆ"‚O LCâ˜úù`mµã^+…ý¬rPh]òàhCÿÿä €Ì? endstream endobj 21387 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 87/Name/im12/Subtype/Image/Type/XObject/Width 3304>>stream & l¢à8dp3÷×ãùð4¡ÿÿÿÿÿÿò ÿÿȂ äLv±ÿÿòÆ>?ÿ5 W &ãøïä ¢¾¹0Y¯ÿò ´?Ž0 endstream endobj 21388 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 147/Name/im13/Subtype/Image/Type/XObject/Width 3304>>stream & >°lùPÌÿȀ°|òÀl~úÇ >”ÿ;„Åñÿòù¸eAZõ¼ÈÁ ÚÄràho¾@Ԏ>@xÇÄr„9ðØ>Ÿ… U !ÂéþÃe >¸õ²9¢pWÄqȁ e¾ù`7u :ÇÝ<Úü .®k l endstream endobj 21389 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 116/Name/im14/Subtype/Image/Type/XObject/Width 3304>>stream & l`E#£ f#ä B¿„ÈÅ|_ïj±òPqüo~±ÿÿȁ e>Þ@– ƒø¥ýëÿûþøþ@| 0üÿòᐃäÀÐ2ß|ü€ø`ÿŽ@| 0×ü >–úy`ÌÇëÖ endstream endobj 21390 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 88/Name/im15/Subtype/Image/Type/XObject/Width 3304>>stream & >”`Âþ¿ÿ UÛÇÇ SÇüȀ¸ù ,äÀÐ3ühŽ9PY r!ÿÿÿÿȁ fÿþ@Ð ßÿÿÿȁ fÿÿÀ @ endstream endobj 21391 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 137/Name/im16/Subtype/Image/Type/XObject/Width 3304>>stream & >°l@Ìÿÿÿò°.>>@@@ä ø„C$2ÇÈEÈChXÿ&ÈBøù´?6Td€@â…úâ–ù h¬A… !òÐhÔwÈ øù˜hüÜÇ UAñÿÿÈ ;ü l AÐXð endstream endobj 21392 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 131/Name/im17/Subtype/Image/Type/XObject/Width 3304>>stream & 600ҏ ¡È•ÿÄÿÿ 0Ž@Ð2Çȃ0â=õŽ@| 0||T‡ TÑûñò@ÖñÇȎ@|ÿ Tñȇácëí½u ±üÌ Óý¬|€ø`ÿøä úõ¥Ž@ÈÿãùØ, endstream endobj 21393 0 obj <>/Filter/CCITTFaxDecode/Height 78/Length 560/Name/im18/Subtype/Image/Type/XObject/Width 3304>>stream & >9 « h ÇÿÇÿÿÈqñü 7Oÿkü€ÍÈÐþÿŅù@n?-ú~Ÿÿÿ§÷ãÈ—öˆÃ! …û`“D4¶@Ô6 R@™ ¡¯ƒ´Âè¡öô¾8_MwIr›Ÿ¿ä ÀrP\u_Èà‚«Ž‘OÞ(d ±¿è‚˜D0\"œ)ÃR¤½"òƒ@… lÑòÐe¡¤ ¡·¢‚#@Õðmþ@Ô¹ŠÈVqԆ&8Pÿ4^ Õ¡dä4„dµ(pAɁ#ýy0Q‚‹¨ ˆ*´iÖ@ØcøÝäÁ}6Wƒ PéDÏ·ò.Ô¨‘aƒ5 „A¾—ÈðqȐ"ÔXá 0Š=0©ãä Hr V9c••ïä‡ yA]Z Âì'a=½<|ˆ¿ò a×¡T ‚#a¦H>ÓOMoÅ~òª:´Œ ÛAé ÓÓP~@Ôtõ†P†ƒ;ÂMSu¯ lAò¤:ä ‚¢Á a:OµA÷§ÿäÁN¢°MÂ"0/Pƒ ˜Aßz°ú]:ÿÈ-‚°‚ eÁ7ðƒÛ „Ó Õ¨OOñÿ x*ЁàÖ9Í Ì*?Á¦êõ[¿_ß!®@$@Èfƒ"@ð§øAÒi„0ºëúä €n<

13. [DOC] The Status of Mangrove Ecosystems: - IUFRO

  • ... which few cultured products can compete in price. Ironically, this source of natural food is now under threat in many areas, due to the demands of coastal ...

  • ÐÏࡱá > þÿ ^ ` þÿÿÿ [ \ ] ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì¥Á @ ø¿ Tž bjbjîFîF . Œ, Œ, T– ÿÿ ÿÿ ÿÿ ˆ šD šD šD šD 4 ÎD T A• þ .E Ô H H H H H ” –I D ÚJ ¤ À” ” ” ” ” ” ” $ ?– R ‘˜ † æ” †z H H †z †z æ” H H û” H‰ H‰ H‰ †z Ð H H À” H‰ †z À” H‰ H‰ Ž ” h ” H "E @Àl¾]ŽÈ šD V‡ – p” À” • 0 A• €” ™ ìˆ R ™ ” Ô ì & ” ™ ¤” ~K  @\ ø H‰ 8h ” Ìq º ~K ~K ~K æ” æ” Ä Ö% Ä >‰ Ö% The Status of Mangrove Ecosystems: Trends in the Utilisation and Management of Mangrove Resources HYPERLINK "mailto:remote-printer.Dan_Macintosh/Institute_of_Aquaculture/Univ_Stirling@441786472133.iddd.tpc.int" D. Macintosh and S. Zisman HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s1" 1. Introduction: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s1_1" 1.1 History of Mangrove Management; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s1_2" 1.2 Objectives of this Review HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2" 2. The Mangrove Resource: Background to Present Day Exploitation: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_1" 2.1 Area and Distribution of Mangroves; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_2" 2.2 Mangrove Biodiversity and Species Characteristics; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_3" 2.3 The Changing Pattern of Mangrove Exploitation; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_4" 2.4 Regional Examples: ( HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_4a" Central and South America, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_4b" Caribbean and USA, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_4c" India and Bangladesh, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s2_4d" S.E. Asia) HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3" 3. Review of Sectorial Activities in Mangrove Ecosystems: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_1" 3.1 Historical Perspectives; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2" 3.2 Timber and Fuelwood: ( HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2a" India and Bangladesh, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2b" S.E. Asia, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2c" South America, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2d" Caribbean, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_2e" Central America); HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_3" 3.3 Wood Chips and Pulpwood; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_4" 3.4 Non-wood Forest Products; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_4" 3.5 Agriculture and Salt Production; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_6" 3.6 Coastal Industry and Urban Development; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_7" 3.7 Mangrove-based Fisheries; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_8" 3.8 Mangroves and Aquaculture: ( HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_8a" Shrimp farming, HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s3_8b" Other aquaculture) HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s4" 4. Integrated Systems of Mangrove Management: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s4_1" 4.1 Small-scale Systems; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s4_2" 4.2 Large-scale Systems HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s5" 5. Conservation and Resource Enhancement: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s5_1" 5.1 Protection of Biodiversity; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s5_2" 5.2 Mangrove Afforestation HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s6" 6. Future Trends and Policy Development: HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s6_1" 6.1 Mapping and Resource Analysis; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s6_2" 6.2 Integrated Coastal Zone Management; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s6_3" 6.3 Public Awareness, Education and Research; HYPERLINK "file:///C:\\Goestl\\bb\\internet060111\\iufronet\\d1\\wu10700\\unpub\\macint95.htm" \l "s6_4" 6.4 Demographic Trends in the Coastal Zone 1. Introduction History of Mangrove Management The ecological, environmental and socio-economic importance of mangrove forests is now widely accepted by international agencies, governments, NGOs, scientists and tropical coastal communities alike. It is appreciated that mangrove ecosystems provide a unique and valuable range of resources and services, making them far more valuable than the sum of the products they generate. Nonetheless, responsibility for mangrove management historically has generally been assigned to sectorial institutions, normally Forestry Departments or their Fisheries counterparts, or in urban settings to infrastructure or utility authorities. Only to a limited extent have these institutions catered for the multiple functions of mangrove ecosystems. As early as the 1920s the Malaysian Forest Department, for example, recognised the legitimate needs of fishermen for various secondary mangrove products, but admitted them to be 'somewhat vexatious complications' in an otherwise straightforward scheme for fuel and pole wood production (Watson, 1928). From such beginnings, mechanisms for mangrove management have continued to evolve, but still largely along sectorial lines. Inevitably, individual agencies have approached coastal resource management with prejudices that limit their priorities to those directly related to agency jurisdiction and goals. Multiple use management, though much talked about, is still the exception in practice, rather than the rule. The problem is succinctly described by Tomlinson: ' A forestry department will emphasise utilisation that may degrade the resource, a fisheries department will emphasise conservation with minimum of disturbance, and an agricultural department may advocate conversion and replacement by some putatively more valuable resource. This conflict is the background to mangrove management...' (Tomlinson, 1986). The limitations inherent in the sectorial approach are in fact, now recognised as a major constraint to establishing sustainable development of mangrove resources (Olsen and Arriaga, 1989; Nuruzzaman, 1993). Other constraints include lack of enforcement (Burbridge and Maragos 1985); the power of various elites to gain exclusive property rights to coastal resources (Olsen and Arriaga, 1989); the lack of community input into management efforts; the poverty status of many indigenous coastal communities; and a lack of awareness amongst decision makers about the mangrove ecosystems they are dealing with. The latter deficiency is compounded by the complex geographical, physical and biological nature of mangroves, since they cover the intertidal zone, but also interact significantly with inshore, upstream and terrestrial ecosystems, and support a diverse fauna and flora of marine, freshwater and terrestrial species (Macintosh, 1982; Daniel and Robertson, 1990; John and Lawson, 1990; Robertson, 1991; UNEP, 1994). Since the late 1960's, the trend away from at least moderately sustainable multiple use of mangrove resources has been exacerbated by many governments, or by politically protected individuals, seeking to exploit tropical coastal resources for purely financial gain. One example is Indonesia's policy to promote shrimp farming during the 1980s to increase foreign exchange earnings to offset a decline in petroleum export revenues. Consequently, the human ecology of mangrove areas has in many cases changed from a joint ownership/multiple-use coastal system into a privately owned single-purpose one of low sustainability; the case of shrimp farms created out of mangroves is perhaps the most publicised and widespread example and has affected coastal communities around the world, including Ecuador, Bangladesh, Thailand and Vietnam (e.g. Meltzoff and LiPuma, 1986; Bailey, 1988; Macintosh and Phillips, 1992; Aksornkoae, 1993; Hong and San, 1993). Ironically, over the same period that these changes have taken place, the ecological, hydrological, and socio-economic functions of mangroves (and other wetlands) have become far more widely appreciated amongst the scientific community (John and Lawson, 1990; Macintosh et al, 1991; UNEP, 1994). The upstream, downstream and on-site inter-actions on which their various functions depend are better understood, and consequently, planners have called for a more integrative holistic framework for mangrove management. To provide a framework which reflects the complex linkages of the mangrove ecosystem, and to combat the limitations of the sectarian approach, a new management approach is being advocated, variously known as Integrated Coastal Zone Management (ICZM), Coastal Zone Management or Coastal Area Management (e.g. Meltzoff and LiPuma, 1986). The main elements of ICZM have been outlined recently by several authorities (see studies by IUCN and ICLARM for details). Working examples remain relatively limited however, and this is largely due to the resistance of entrenched sectorial interests who perceive a loss of profit and autonomy under an integrated management structure. Objectives of this Review The objectives here are to describe the world's mangrove resources, identify how their exploitation and conventional management have affected the global resource as it exists today, then suggest ways in which a more sustainable exploitation can be operated, within a modern management approach. Particular emphasis is given to the aquatic component of mangrove ecosystems, because the serious state of mangrove fisheries and the highly publicised impact of coastal shrimp farming on mangrove ecosystems have done much to influence recent opinion that new management strategies are urgently needed. Some examples of integrated management systems are presented based on traditional concepts, or on pilot scale attempts to introduce modern alternatives as a component of ICZM. Finally, future trends in mangrove ecosystem management are suggested against a background of predicted significant increases in population pressure in tropical coastal areas. The Mangrove Resource: Background to Present Day Exploitation Area and Distribution of Mangroves Mangrove trees and shrubs form conspicuous wetland ecosystems fringing extensive areas of coastline in tropical and subtropical latitudes. In addition to the mangrove forest itself, waterways (estuaries, creeks, canals, lagoons and backwaters), mudflats, saltpans and islands contribute to the physical dimension of these ecosystems (described by Kjerfve, 1990). True mangroves are mainly restricted to intertidal areas between the high water levels of neap and spring tides. Under optimal conditions, generally those found in tropical river deltas estuaries and lagoons, mangrove trees can reach a height of up to 45 m to create a valuable timber resource (Watson, 1928; Tomlinson, 1986; UNEP, 1994). Mangroves are estimated to extend over 15 million hectares world-wide (Lacerda and Diop, 1993); there are about 6.9 million ha in the Indo-Pacific region, 3.5 million ha in Africa and some 4.1 million ha in the Americas including the Caribbean (Fig. 1; Table 1). However accurately defining the extent, characteristics and dynamics of mangrove ecosystems has only become possible recently with the availability of satellite imagery and GIS techniques (e.g. Blasco et al, 1989; Jensen et al, 1989; Vibulsresth et al, 1991). Detailed estimates of the mangrove areas remaining in Thailand, based on Landsat-MSS data, are shown in Table 2 as an example. The most extensive and luxurious mangroves extend across the Indo-Pacific regions where they are best developed in the delta systems of major rivers, e.g. the Ganges-Brahmaputra, Irrawady, Mekong and along very sheltered shores protected by large land masses, notably Madagascar, the Malacca Straits, Kalimantan, the Indonesian Archipelago and Papua New Guinea. The largest intact area of mangroves occurs in Bangladesh, where there is almost 600,000 ha of the Sundarbans ecosystem and a mangrove forest area estimated in 1985 to cover 401,600 ha (Chaffey, Miller and Sandom, 1985). In South America, mangrove forests extend from northern Peru on the Pacific coast and from Brazil's southern state of Rio Grande do Sul on the Atlantic coast (Fig. 1). Aridity and the cold Humbolt current limit the southern extension on the Pacific side to about 6 degrees south, whereas higher rainfall and warm currents along the southern coast of Brazil permit mangrove growth to about 28 degrees south (Snedaker et al. 1986). Large undisturbed forests remain in remote areas, for example the Orinoco Delta in eastern Venezuela (495,200 ha) and the Pacific coast of Colombia (451,300 ha). Similar expanses occur in northern Brazil (Snedaker et al. 1986). The mangroves of the Americas continue north along both sides of the Central American isthmus. The 3,900 km Pacific coast has over 340,000 ha of mangrove forests, with a higher floristic diversity than the Caribbean community (Jimenez, in D'Croz et al, 1990). Mangroves also penetrate some temperate zones, but there is a rapid decrease in the number of species with increasing latitude (Chapman, 1976; Tomlinson, 1986). At their latitudinal extremes: 31 N in southern Japan (Hosokawa et al, 1977); 31 N on the Pacific coast of Mexico; 32 S in Brazil and 38 S in southern Australia (Wells, 1983) the mangrove vegetation is in each case restricted to a single species. Arid climates also limit Mangrove Biodiversity and Species Characteristics About 80 species of true mangrove trees/shrubs are recognised, of which around 50-60 species make a significant contribution to the structure of mangrove forests. Species diversity is much higher in the Southeast Asian region, where approximately two-thirds of all species are found, while approximately 15 species occur in Africa and 10 in the Americas. The trees of several genera are valuable for timber or fuelwood, especially Rhizophora species which occur in all three regions. Although mangroves thrive best along sheltered humid tropical coastlines where alluvial sediments can accumulate as a substratum for mangrove colonisation, mangroves also occur as fringes or patches in carbonate sediments along small island shores, as in the Caribbean (Ellison, 1993). Arid climates also reduce species diversity and restrict mangrove growth to low shrub formations in extreme cases, as in Northern Queensland and along the Persian Gulf and Red Sea coasts. The effect of aridity rather than latitude on mangrove communities is well demonstrated in India. Excluding the Andaman and Nicobar islands, about 50% of India's mangrove resource is found in the Ganges delta of West Bengal (Sunderbans) and comprises more than 20 species, whereas at similar latitudes on the arid west coast (Gujarat) only about 12% of the total resource and nine species occur (Vishwas, Chavan and Untawale, 1993). The Changing Patterns of Mangrove Utilisation Saenger et al. (1983) attribute the general cause of mangrove destruction and degradation to the preference for short-term exploitation for immediate economic benefit, rather than longer-term but sustainable exploitation. Expanding on their basic classification, five specific types of human interference causing mangrove destruction can be suggested:- over-exploitation by traditional users, e.g. excessive removal of trees for fuel wood, especially charcoal; activities requiring maintenance of the mangrove ecosystem, e.g. rotational felling and replanting of mangrove stands for wood production; natural resource activities destroying the mangrove resource which require little or no inputs from it, e.g. coastal agriculture; salt production; intensive shrimp culture; other activities, generally unrelated to the mangrove ecosystem, which completely destroy it, e.g. harbours, factories and other forms of coastal industrialisation or urbanisation; off-site activities unrelated to the mangrove ecosystem but detrimental to it, e.g. offshore dredging, coastal pollution, diversion of upstream freshwater sources for irrigation. In general there is an increasing rate or scale of impact associated with the above and a given mangrove area can be affected by several different activities simultaneously, or over time as land use patterns change. The mangroves which used to fringe the inner Gulf of Thailand in the provinces of Samut Sakhorn and Samut Songkram are a good example. Today these provinces are almost devoid of mangroves (Table 2), but originally the mangroves were extensive; they would have served principally as fishing grounds for local people and a source of wood products. The inner mangroves were cleared, starting several decades ago, to create shallow ponds for salt production and canals were constructed through the mangroves for access and to carry seawater to the salt pans. Wild shrimp production in the wet season, alternating with salt production in the dry season, was introduced from about the 1930s, giving a further economic reason for mangrove conversion by local people. With the development of intensive shrimp farming techniques in Thailand in the 1980s, there was a sudden rush into modern shimp farm construction by deepening the salt ponds or converting large areas of the remaining mangroves. Nearly all the investment was by companies and non resident businessmen. By 1989 shrimp production in these provinces had collapsed because the environmental carrying capacity was exceeded (Phillips, 1994). Much of the land is now unproductive and awaits redevelopment into factory or housing estates. The mangrove degradation and destruction that results from such activities are also accompanied by an accelerating removal of common property benefits in mangrove ecosystems (i.e. 1.above), to forms that can accrue to private concerns (i.e.2-4 above) (Burbridge 1978; Meltzoff and LiPuma, 1986). Regional Examples Having established an analytical framework, changing patterns of mangrove use will be examined for different regions of the world. Central and South America In Central America, archaeological evidence has confirmed the use of mangrove fuelwood in salt production dating back to before the Spanish period. It is also likely that there was a range of subsistence harvesting from the mangroves associated with a string of small coastal settlements (fishing, hunting, firewood and pole wood extraction, etc.) took place (McKillop and Healey, 1989; Jefferson and Kepecs, 1989). Since the Colonial period, exploitation of the Central American coast has intensified, although much more so along the Pacific shore. Spanish colonists left almost the entire Caribbean coast, from the Yucatan down to Panama, to the native Indians (Leonard, 1987). Removal of natural resources was undertaken sporadically by the English from temporary settlements in the 18th and early 19th centuries, but neither this nor subsequent development has much affected mangrove on a significant scale, other than in Panama where clearance for charcoal production has significantly reduced the mangrove resource. In contrast, the mangroves along the Pacific coast have been substantially reduced, through conversion to agriculture, aquaculture, industry and settlement, and by over-exploitation for fuel and construction materials. In Central American, recent threats to mangroves have been reviewed by Leonard (1987). His findings show that in Guatemala and El Salvador, direct use for charcoal production and the extraction of tannin have been responsible for large scale mangrove removal and degradation. Indirect damage has resulted from agricultural runoff, particularly from the cotton growing areas of the Pacific coastal plain. In Honduras, salt extraction has caused mangrove destruction. Pollution from sediments, pesticides, industry and sewage are significant factors contributing to mangrove degradation. As a consequence of extraction for charcoal and tannin production, combined with the indirect impacts from sediment and pesticide pollution, it is estimated that the mangrove area in Guatemala has been reduced by 92% since the late 1950s (Leonard, 1987). In Costa Rica, 40% of the original mangrove cover had gone by 1979, due primarily to tannin production, aquaculture, salt production and coastal development. Threats to Nicaragua's mangroves occur mainly on the Pacific coast. Although detailed information is lacking, it is likely they are under similar pressures to mangroves in Honduras. In Costa Rica, major causes of mangrove destruction have been tannin production (now banned), shrimp aquaculture, salt production, coastal development, and to a lesser extent than in Guatamala and El Salvador, cutting for fuelwood and pollution from agriculture. Panama has experienced substantial alteration of its mangroves. Cutting for charcoal and tannin production, and infilling for urban and resort development have all been responsible. Belize is the only country where Leonard (1987) considered that mangroves were not being significantly degraded or eliminated, although there is currently localised clearances for urban expansion and tourism development (Zisman 1992). Jimenez (in D'Croz et al, 1990) considers mangrove destruction to have been poorly monitored in Central America, but quotes reported losses of 385 ha/yr in Nicaragua (Vega 1984), 560ha/yr for Guatamala (Rollet 1986) and 45ha/yr for Costa Rica (Jimenez 1990). Most of the conversion he suggests, has been for rice fields, pasture, salt evaporation ponds, and more recently, shrimp ponds. He further suggests however, that the most serious mangrove management problem in Central America is not conversion but degradation, through overcutting for fuel where wood is the main energy source (e.g. El Salvador) and from pesticide contamination in El Salvador and Nicaragua originating from cotton and watermelon crops. In South America, historical uses of mangroves are relatively poorly documented, although Indians are known to have inhabited coastal areas characterised by extensive mangrove forests (Snedaker et al. 1986). Presumably, pre-Colombian uses were similar to the subsistence activities observed today, primarily the cutting of trees for firewood, charcoal, and poles for light construction, domestic use and fish traps. These were likely to be small scale operations carried out by single families or individuals from each village (Snedaker et al. 1986). Siddall et al. (19??) do however, refer to open-system aquaculture by the Inca in Ecuador as long ago as 400 years. Even in more recent times, the neotropical mangroves have not, with certain exceptions, been managed or utilised beyond the provision of subsistence needs for local populations. Part of the reason for the benign neglect is the fact that the majority of major population centres were initially located in high altitude environments (eg Bogota, Colombia) enjoying a cooler more favourable climate and lower incidence of diseases such as yellow fever and malaria (Snedaker et al. 1986). Caribbean and USA The original mangrove resources of the Caribbean were relatively vulnerable, being confined by a combination of steep topography, small estuaries and small tidal range. A significant proportion of mangroves were removed by early settlers for fuel in salt production. Settlements along the coast have been the main cause of modern clearance, with a significant proportion of this being related to the provision of tourist infrastructure. Lugo (1988) gives the original area of mangroves for Puerto Rico at 30,000 ha. By 1975 50% had been lost. Losses are attributed to transport, housing, marinas and landfill, with recreation and pollution degrading additional areas. Saenger et al. (1983) cite pollution from sewage and industrial waste as significant causes of mangrove degradation in the Lesser Antilles (Guadeloupe and Martinique). For the Caribbean, Lugo et al. (1988) give conversion to agriculture and clearance for fuelled and charcoal production as early causes of mangrove losses, with clearance for tourist facilities, housing and roads arising as more recent threats to surviving stands. In contrast, in Haiti and the Dominican Republic the need for cheap fuel has led to extensive mangroves clearance, whereas tourism is not highly developed. In the USA, agricultural conversion has been the principal cause of loss of wetlands overall, but for mangroves (restricted by climate to the south-eastern states) the primary causes are different, with housing, industry, and drainage for disease vector control being the main factors (Burbridge 1978). India and Bangladesh Large areas of the inland mangroves of southern Asia have been converted to agriculture (mainly paddy fields) or salt production. Shrimp farming represents a relatively new form of coastal land use which is a further threat. Jagtap et al (1993) cite an overall areal loss of mangrove in India of 34% between 1975 and 1990-91, equivalent to 148,500 ha, Traditionally the mangroves of India and Bangladesh have been exploited for timber and fuelwood, bark tannin, animal fodder, native medicines and food (fish, shellfish, honey, wild animals). Population pressure has greatly increased the rate of exploitation, leading to degradation of the remaining forests at an alarming rate. In Bangladesh, where an estimated 300,000 wood and thatch cutters, honey collectors, and fishermen are directly dependent on the Sundarbans, the area of pure sundri (Heretiera fomes -the main economic timber species) is reported to have shrunk from 31.6 to 21.0% between 1959 and 1983 (Chaffey, Miller and Sandom, 1985). Top-dying of sundri as well as over-cutting is blamed for this situation, but the die-back problem seems to be associated with increased salinity arising at least partly from large scale diversion of freshwater - an indirect form of human impact on the Sundarbans mangroves. Southeast Asia Huge areas of mangrove have been lost from Southeast Asia due to wood extraction, conversion to agriculture or salt production, coastal industrialisation and urbanisation and, conversion to coastal aquaculture (Table 1). Recently, shrimp farming has been blamed for large scale losses in several countries, notably Thailand, Indonesia and the Philippines. Estimates of the mangrove areas destroyed for different purposes in Thailand are shown in Table 5. These reveal the relative importance of aquaculture as a cause of mangrove destruction since 1980, but a greater total loss of almost 70,000 ha prior to 1980 due to mainly to agriculture and coastal infrastructure developments. The total mangrove resource in Thailand has shrunk from an estimated 368,100 ha in 1961 (FAO, 1982) to 196,643 ha in 1986-87 (Aksornkoeae, 1993). Review of Sectarian Activities in Mangrove Ecosystems Historical Perspective Historically mangrove ecosystems have been sites of human settlement throughout the tropics, especially in the India-Pacific region. This is understandable since mangroves dominate in sheltered locations, offer extensive navigable channels for boats and provided early settlers with an abundant source of building materials, fuelled, thatching, bark (a source of tannin), medicines, etc., as well as excellent gathering, hunting and fishing environments for food (see Table 3). The wide variety of traditional products from mangroves utilised by coastal communities is well documented (Hamilton and Snedaker, 1984; Chan and Salleh, 1987). Many of these activities still continue, and include collection of thatching material (Nypa), gathering of shells to produce lime and wild honey collection (in the Sundarbans especially). While early coastal settlers enjoyed great self sufficiency in this way, and some human communities still live in an integrated way within mangrove environments, commercial exploitation of mangrove resources, especially for timber and fuelwood, developed rapidly to supply the growing needs of urban populations. Even among traditional communities, increasing population pressure on coastal resources has inevitably led to a gradual degradation of mangroves as more and more forest has been cut to satisfy local timber and fuelwood needs. Timber and Fuelwood In volume terms, timber production from mangrove forests has been minor in comparison to that from other forest types, primarily due to timbers of superior quality being available in tropical inland forests (Watson 1928) and difficulties of access and transport associated with these wetlands. However on a local scale, mangrove timber has always been important to traditional coastal communities for house and boat building (FAO, 1982), and remains so today. In the Bangladesh Sundarbans, timber yields, principally of Heritiera fomes (sundri) and Excoecaria agallocha (gewa), have exceeded 300,000 cubic metres annually (FAO, 1982), representing a major source of wood in a country poorly endowed with other forest types. Elsewhere, by far the greatest use of mangrove wood is for fuel, especially charcoal because of the exceptional slow-burning properties of the wood of Rhizophora species. Wood still provides 90% of the fuel used in Vietnam (SCF, 1993) for example, hence the great pressure on mangroves along heavily populated coastlines such as in Vietnam. Complete forest management plans for sustainable production from mangrove forests are limited to the Asian region (e.g. Curtis 1933, Dixon 1959, Khan 1966, Choudhury 1968). No such schemes exist in South America although some international organizations such as FAO have made efforts to develop plans for selected mangrove forests. India and Bangladesh Heavy exploitation of mangroves in India for firewood and animal fodder has depleted the resource significantly, except in the Indian Sunderbans and the Andaman Islands where selective systems of rotational felling have been practiced (Blasco, 1975). Untawale (1978) quoted production annually of almost 25,000 t of timber plus almost 16000 t of firewood from the Indian Sundarbans, based on felling cycles of 20 years in Heritiera dominated forest, or 30 and 40 years in forests dominated by Excoecaria or Ceriops, respectively. In addition to firewood, strip felling was carried out in the Andamans to extract poles of Bruguiera gymnorrhiza, with successful replanting of Bruguiera seedlings reported (see FAO, 1982). The largest single area of mangroves in the world lies in the Bangladesh part of the Sunderbans, covering an area of almost 600,000 ha including waterways, and is the only large mangrove forest managed for commercial timber extraction in Asia (Christensen, 1982). As noted above, exploitation of the Bangladesh Sunderbans mangroves for timber has exceeded 300,000 t annually, but yields have declined in recent years as large trees have become scarcer. The 'sundri' tree (Heritiera fomes) is the most important timber yielding species (Siddiqi and Siddiqi, 1990). Fuelwood is the second major product. Forest management plans for the Sundarbans date back to the 1870s (described by Chaffee, Miller and Sandam, 1985). Early overcutting resulted in a decline in the standing stocks of the four main economic species. The most comprehensive plan was prepared for the period 1931 to 1951 (Curtis, 1933). This had five working circles, three of which were in what is now the Bangladesh portion of the Sundarbans. The working circles were based on ecological criteria and identified as the freshwater, moderately saltwater and goran (Ceriops decandra) circles. Twenty year felling cycles were specified for the freshwater and goran circles and 30 years for the moderately saltwater circle. Compartments were the basic management unit and four stand qualities were recognised, based on average maximum tree heights. Subsequently this was simplified to three stand qualities and in each cutting compartment each tree species had a single diameter limit. The next major working plan after Curtis (1933) covered the period 1960-61 to 1979-80 (Choudhury, 1968) and continued to be more or less followed thereafter. An ODA forestry team completed a new inventory, with management recommendations, in 1985, but these have not been implemented (Bangladesh Forest department personal communication) and a new inventory by an FAO team will begin in 1995-96. Choudhury's management plan is based on 20 year cutting cycles and defines three working circles: gewa (Excecaria gallocha), sundri (Heritiera fomes) and keora (Sonneratia apetela). All tree felling is done by contractors under supervision by the Department of Forestry officers and based on minimum diameters fixed for each compartment; a royalty is paid on a unit volume or length basis (detailed in Chaffey, Miller and Sandom, 1985). There is no replanting after felling. Southeast Asia The mangrove forest plans operating in Southeast Asian countries, principally in Malaysia, Thailand, Vietnam and Indonesia, have been the subject of many reviews (FAO, 1982, 1985; Aksornkoeae, 1993; Hong and San, 1993;). In Indonesia, commercial exploitation of mangroves for charcoal is reported from 1887 in Sumatra (Jelles, 1929 but, despite early attempts to introduce forest working plans, mangroves were exploited with little management controls until the 1970s (FAO, 1982). Since then, large areas of 'production' forest have been assigned to concession holders, but with regulations concerning their activities introduced by law in 1978. Concessions totally 455,000 ha were operating in the 1980s (cited by FAO, 1985). The rules require concessionaires to make an inventory of the concession area and to leave a protection zone of undisturbed mangrove at least 50 m wide at the seaward margin of a site and at least 10 m wide along river banks; annual cutting limits are set by the Directorate General of Forestry. Forty seed trees per hectare (minimum diameter 20 cm) must be left after felling, or 2500 seedlings planted at a spacing of 2m x 2m. As with other mangrove management systems, the main problems are associated with effective implementation and supervision of these regulations. South America According to Snedaker et al. (1986), large scale mangrove forest management in South America is considered to exist only at the planning stage, with the governments of Brazil, Panama, and Venezuela developing working plans (not necessarily for sustainable production). In the latter example, Hamilton et al. (1984) does note the harvesting of large Rhizophora in the Orinoco delta for power utility poles. Otherwise, Snedaker et al. (1986) consider plans for mangrove forest exploitation in South America to be highly exploitive; e.g. clear felling for sale to international woodchip buyers. Details of such an operation in the Orinoco Delta in Venezuela are given in Saenger et al. (1983). Caribbean Even though the extent of Dominican mangroves is so limited, poles are harvested from the main stands of white mangrove (Laguncularia racemosa) (Arlington 1988). Central America The main commercial activity in Panama's mangrove is the harvesting of poles (216,125 cubic metres a year) (Jimenez in D'Croz et al. 1990). Figures from permits suggest that in Nicaragua 4000-7000 cubic metres of mangrove are harvested annually for poles (Vega 1984), with a further 5000 cubic metres annually for other timber (ibid). In Honduras, between 80,000 and 120,000 cubic metres of mangrove are estimated to be used for firewood annually (Flores 1983, Rollet 1986) (although this is largely for use in salt production). In Nicaragua, according to the permits granted, 9,000 cubic metres a year are collected for firewood (Jimenez in D'Croz et al, 1990), and according to Vega (1984), the El Salvador harvest is approximately 30,000 cubic metres a year (Miranda, 1983). Both Jimenez (in D'Croz et al., 1990)) and Snedaker et al. (1986) consider charcoal production in Central and South America to be relatively inefficient. Panama is the main centre of production, providing smokeless fuel for the urban middle class. Charcoal production in Panama demands around 7448 cubic metres of mangrove a year, primarily taken from stems of less than 25cm dbh (D'Croz et al. 1990). In the Terraba-Sierpe area of Costa Rica, 1300 cubic metres of charcoal is produced annually (Chong 1988). Siddall et al. (19??) also consider charcoal production as a significant cause of mangrove loss in Ecuador. Wood Chips and Pulpwood Large scale conversion of mangroves for wood chip production began in East Malaysia and Indonesia during the 1970s. Two wood chip mills were established in Sabah in 1971 and a licence for 15 years was granted for a concession of almost 50,000 ha to produce wood chips, mainly for export to Japan for rayon manufacture. Malaysia halted this practice thereafter, but mangrove wood chips are still a major export from Kalimantan accounting for the loss of thousands of hectares of forest (personal observation). Soemodihardjo (1978) mentions a concession of 35,000 ha of mangrove in Sulawesi for pulpwood production. Clearly such practices are unsustainable and they only continue in Indonesia because there are still large tracts of mangrove with very low human population levels, as in East Kalimantan. Non-wood Forest Products Tannin The earliest historical record of mangrove use for South America is inferred from a law promulgated by King Jose of Portugal in 1760. The law, imposed on Brazil, made it illegal to fell mangrove trees without simultaneously utilising the bark for tannin. It was feared that extensive clearing for firewood would reduce the bark available for the tanneries. In addition to a financial penalty, the law also imposed a three month jail term (Hamilton et al. 1984). Small-scale tannin production did persist, using the bark from felled Rhizophora. A small industry existed in Belize for example, during the 1950s (Zisman, 1992), but in common with other sites, production was eliminated by the subsequent collapse of the world tannin market in the 1960s. It continues at only a very few sites in Central and South America. One of the larger producers is located in southwest Costa Rica, using bark (illegally) exported from Panama (Snedaker et al. 1986). Siddall et al. (19??) give more details, noting that although Costa Rica has banned mangrove harvesting, a Panamanian cooperative harvests red mangrove bark to supply Costa Rica's leather tanning industry. More than 700,000kg of red mangrove bark were exported to Costa Rica in 1981 for example, representing the cutting of as much as 250 ha of mangrove. Jimenez (in D'Croz et al., 1990) quotes bark harvests of 1260 tons/yr for Honduras (Rollet 1986) and 437 tons/yr for Panama. Bark yields for mangroves in Costa Rica range from 1840 to 4490 kg/ha (Jimenez 1990). He notes that the preference for larger trees (> 25cm dbh) in bark collection results in extraction having a greater impact than other common forms of harvest such as poles and charcoal which use smaller stems (Jimenez, in D'Croz et al., 1990). The importance of bark tannins has declined in many Asian countries, but some mangrove tannin is still used in India and Bangladesh for leather curing and there are some other traditional uses, e.g. for curing fishing nets in Sri Lanka (FAO, 1982). The gathering of mangrove leaves (Avicennia) for animal fodder remains widespread in the Middle East and Southern Asia, for feeding camels in Iran and India, for example; in fact grazing by domestic animals is a serious cause of mangrove degradation in parts of India (personal observations). Other Products Mangrove honey is an important economic product extracted from the Sundarbans (Nuruzzaman, 1993). Although impossible to quantify, hunting also remains a significant activity in the Sunderbans and in many other areas in Asia where mangroves are still extensive. Unfortunately, this extends beyond hunting to support local food needs, into the poaching of rare and endangered species for sale as skins and stuffed specimens for tourist markets (Nuruzzaman, 1993). To a limited degree native medicines (see Table 4) and miscellaneous plant extracts (e.g. a fish poison is obtained from the Derris plant) and food items are still collected from mangrove forests (Chan and Salleh, 1987). The exploitation and value of aquatic products from mangrove ecosystems is, however, of far greater significance today, as described below. Agriculture and Salt Production In Asia large tracts of back mangroves were cleared initially for agriculture, especially rice farming (reviewed by FAO, 1982). Other suitable crops include coconut and oil palm and even pineapple. Rice farming can be successful on mangrove soils in the wet season, although yields are only moderate. However in many such areas the soils are alluvial in origin and have acid sulphate or potential acid sulphate characteristics which lead to a rapid reduction in rice production within a few years (due to acidity, iron and aluminium toxicity and lack of available nutrients), after which they are abandoned (FAO, 1982). These soil problems can be countered by the use of lime and fertilisers, but it may not be economically viable to do so. For example, fertilized potentially acid sulphate soils in the eastern region of the Bangkok plain produced 1,940 kg/ha, whereas yields from non acidic mangrove soils in the western region reached 3,000 to 4,000 kg/ha (cited by FAO, 1982). Salt water intrusion is another problem which can destroy coastal rice crops; this is a frequent occurrence in central Vietnam, for example, due to high waves generated by typhoons. Conversion of mangroves to rice agriculture is not common in South America (Snedaker et al. 1986). In many parts of Asia the environmental and economic limitations of coastal rice farming have been overcome by alternating the rearing of shrimp with a rice crop in the same field, or by converting completely to shrimp farming. In the Khulna District of Bangladesh, poldered rice fields ('ger') are flooded with brackish water in the dry season months for shrimp culture, then a rice crop is grown in the wet season when the field can be flushed with freshwater (e.g. Nuruzzaman, 1993). For economic reasons associated with the high price of shrimp, such partial or complete switches from rice farming to aquaculture are putting further pressure on the remaining mangroves. Although less obvious than habitat loss, the indirect effects of agriculture on mangroves, through the diversion of freshwater by agricultural irrigation schemes, or run-off of agricultural chemical residues into mangroves, have also been significant in some cases. The interception of natural freshwater flow into mangroves and its diversion for irrigation purposes is a factor associated with deteriorating mangrove conditions in the Indus Delta and in the western part of the Sundarbans (e.g. Chaffey, Miller and Sandom, 1985). Although very little information is available, there is great concern in Asia regarding environmental impacts from agricultural pesticides, some of which are known to be highly toxic to shrimp (Macintosh and Phillips, 1992). The effects of antibiotic residues from the treatment of bacterial diseases in intensive shrimp farming is of similar concern. In both cases, such chemicals are likely to enter mangroves with discharge or run-off waters. In many regions of Asia with a seasonally dry climate, large areas of mangrove were cleared in early times for solar salt production (e.g. Table 5). Today there are still areas devoted entirely to salt pans (e.g. central Vietnam), elsewhere, salt production is rotated with shrimp farming in the wet season, as in the Cox's Bazaar area of Bangladesh (described by Nuruzzaman, 1993). Because of the low value of salt, some salt pan areas have subsequently been converted into modern shrimp farms, e.g. in the inner Gulf of Thailand.. Coastal Industry and Urban Development In addition to the physical loss of mangroves through coastal industrialisation, there are also concerns over environmental effects from pollution. Burns et al (1993) note that there were 157 major oil spills in tropical seas between 1974 and 1990. Deep mud coastal habitats may take 20 years or more to recover from the toxic effects of such oil spills. Mangrove Based Fisheries Over the past two decades or so, research has generated a large volume of data supporting the view that there is an important linkage between mangrove ecosystems and fisheries productivity. The basis of this relationship seems to be that mangroves provide (a) an extensive three dimensional environment for fish and shellfish, especially to the juvenile stages (i.e. a nursery habitat); and (b) detritus exported from mangroves provides a major energy source in tropical coastal waters to support high productivity in food chains involving large numbers of detritus-feeding species, such as mullets and penaeid shrimp. Many high value, commercially exploited fish and shellfish utilize mangroves during part of their life cycles, including white shrimp (Penaeus merguiensis, P. indicus, P. vannemei), groupers (Epinephelus tauvina), sea-perch (Lates calcarifer), mud crab (Scylla serrata), milkfish (Chanos chanos) and mullets (Liza spp.). Although the exact degree of mangrove dependency of such species is argued by scientists, it is clear from fishery catch data that large areas of mangrove support high yields of fish and shellfish. Mangroves and Aquaculture Over the last twenty years one of the greatest perceived threats to mangrove resources has been the rapid increase in coastal aquaculture and, in particular of shrimp farming. The main motivation of tropical coastal aquaculture is financial profit, not the production of food for local consumption; coastal communities invariably have a reasonable supply of cheap/captured seafood with which few cultured products can compete in price. Ironically, this source of natural food is now under threat in many areas, due to the demands of coastal aquaculture (removal of young fish and shellfish to supply culture operations, fisheries habitat losses (especially nursery sites) and pollution - chiefly from intensive shrimp farming where its main function is income generation - the production of cash crops to be sold to distant, often export, markets (Csavas, 1990). Coastal aquaculture production in 1990 amounted to approximately 7.5 million tonnes worth an estimated US$13,230 million (FAO, 1992). Whilst this is undoubtedly a legitimate economic aim, little of the profits accrue directly benefit the coastal communities, even though it is they who suffer from the worst excesses of aquacultural development (Primavera, 1989,1994; Lee and Wickins, 1992). Given the chance to express their preferences, local communities in many regions would opt for labour intensive, low cost technology operations that are more in keeping with social structures and environmental resources than large imported farm businesses that enclose wide areas of land. (Lee and Wickins, 1992). In its pristine state the mangrove forest plays an important physical role in relation to tropical coastlines and offers various niches to many plant and animal species. As a result mangroves provide a wide variety of goods and services (see Table. 1) for the communities that live in it's environs. Because they have traditionally been thought of as low value, unpleasant places, mangroves, in the main, have not been legislated for but have been open to everyone. It was therefore relatively easy for developers, often from far away, to turn these highly productive, complex ecosystems into a single-use private domains (Primavera, 1989, Barg, 1992). It has often been cited that aquacultural developments bring employment, but it is often the case that developers have preferred to bring their own workforce with them. Thus, many poor people who depend on mangrove forests for their livelihood are eventually dislocated (Saclauso, 1989). Although the majority of coastal aquaculture operations to date have had little adverse effect on ecosystems (Barg, 1992), there have been a great many cases where severe environmental degradation has occurred, as in the case of shrimp farming practices in Southeast Asia and Latin America (e.g. Meltzoff and Lipuma, 1986; Bailey, 1988; Chua Phillips et al., 1990; Aiken, 1990). With greater reliance on aquaculture due to over-stressed natural fisheries, improvements in technology and the consequent intensification of culture methods, the hazards posed are increasing. All aquaculture operations impact on the environment, but to varying degrees (Phillips, 1994). Mollusc and seaweed farming, for example, occupy space, possibly bringing them into conflict with fishermen and others navigating inshore waters, and may restrict water flow and affect sedimentation rates, but are otherwise environmentally friendly (Angell, 1986; Macintosh and Phillips, 1995). Taken collectively, the potential negative environmental impacts of tropical coastal aquaculture can be summarized as follows: depletion of natural resources (e.g. fry collecting) clearance of wetland habitats discharge of nutrients and organic wastes introduction of exotic species release of antibiotics and other chemicals increase in pathogens numbers lowering of water tables from water extraction salinization of freshwater supplies increase in sedimentation loads lowering of dissolved oxygen levels increase in biological and chemical oxygen demand. With environmental risks like these, it is vital that effective integrated coastal management and sound aquaculture husbandry techniques are employed. There are even cases where one form of tropical coastal aquaculture is impacting on another form; for example, the decline of crab farming in Surat Thani, Southern Thailand is blamed on the development of shrimp farms which have removed large areas of the mangrove habitat associated with this species (personal observation). Shrimp farming Although tropical shrimp farming has a long history, dating back at least 400 years (e.g. the 'tambaks' of Indonesia, 'bheris' and 'gers' of Bengal and tidal ponds in Ecuador) the expansion of the industry over the last 15 years has been extremely rapid and it's environmental impact is now the subject of grave concern (e.g. Primavera, 1989, Macintosh & Phillips,1992). Modern penaeid shrimp culture began in Japan over 50 years ago, with the development of successful hatchery techniques, and spread throughout Southeast Asia and Central and South America. The early production leaders, Taiwan and Ecuador have now been superceded by China, Thailand, Indonesia and the Philippines (Csavas, 1990). With an estimated 80% of cultured shrimp being sold on global rather than domestic markets this is a valuable source of foreign exchange for developing countries. It is not surprising therefore, that there has been a large increase in the number of countries (from the Indian subcontinent, Central America, Southeast Asia and Oceania) which are now engaged in shrimp farming (Csavas, 1990; Liao, 1990; Wedner & Wildman, 1992). Production trends suggest that the exponential growth period for shrimp culture that occurred during the late 1980's is drawing to a close and that expansion looks set to continue, but at a slower rate (Phillips et al., 1993). Most shrimp are cultured in ponds, although some species have been cultured in pens and cages (Beveridge, 1984). Availability and cost of land is therefore a very important criterion in site selection for potential investors. Mangroves were one of the first environments to be converted into aquaculture farms as they allowed trapping and holding of wild shrimp and fish in tidally flushed ponds. Although mangrove areas are now generally considered to be sub-optimal for the culture of shrimp due to their acid-sulphate soils and high clearance and maintenance costs large tracts of forest are still being converted to shrimp ponds. The continued use of mangrove areas for shrimp farming is probably due to several reasons: their proximity to brackish water supplies, being situated on level terrain, the presence of traditional trapping and growing grounds, often hundreds of years old (Csavas, 1990); such areas have been targeted for "reclamation" and development into modern farms; optimal land in the region had already developed and property rights to mangrove areas are often cheap and readily available. In recent years there has been a great deal of attention given to the impact of shrimp culture on mangroves (Primavera, 1991, Phillips & Macintosh, 1992). Reliable figures for the conversion of mangrove areas to shrimp ponds are extremely difficult to find but if all the 993,750 ha. of shrimp ponds were converted from mangroves then this would only account for less than 6% of the global resource. In reality the figures are much lower than this as in some countries such (e.g. China) shrimp ponds are found largely in non-mangrove areas and in others (e.g. the Philippines) many of the traditional extensive systems have been in operation for many years (Macintosh and Phillips, 1992). The problem remains serious however; Thailand has lost a total of 203,000 ha, or 52% of the total mangrove resource, since 1961 (Anon, 1993) although the Thai government has at last recognized the importance of preserving it's pristine forests and is now using remote sensing to track their loss and to provide a methodology for a cost-effective, reliable and effective information gathering system for sensible mangrove planning and management. However, despite legislation, there has so far been no firm enforcement and the conversion of mangroves to shrimp farms continues (Briggs, 1994). Similar events are taking place in many other areas of the world; in Indonesia, most of the 300,000 ha. of land being used to culture shrimp was ex-mangrove forest and the government is planning to raise this figure to more than 1 million ha. By 1985 Java had lost 70% of it's mangroves, Sulawesi 49% and Sumatra 36% (Csavas, 1988). A similar scenario exists in the Philippines where mangrove areas have shrunk from 448,000 ha. in 1968 to 110,000 ha. in 1991. This destruction has had a devastating effect on coastal fisheries and has led to the marginalisation of subsistence fisherman and the erosion of shorelines (Singh, 1987; Primavera, 1989;; Barg, 1992; Chua, 1993). As well as removing the economic values of the forest, the construction of canals and dikes irreversibly alters the hydrological characteristics of the area and thus the ecology of the system (Csavas, 1990). Although there are many different techniques used to culture shrimp, they can broadly be placed in three categories: Extensive culture These are based on methods that have been practised in Asia for hundreds of years and are characterized by low inputs and low yields (Table 2). Whilst these systems are still very common in Asia they are gradually being superceded by more intensive methods (Phillips et al., 1993). The fact that these systems have been utilised for such a long period of time attests to their potential sustainability. Traditionally, ponds ranging in size from 1 to several hundred hectares (Silas, 1987; cited in Phillips et al., 1993) are excavated in inter-tidal areas and are largely dependent on the entry of wild fry into the ponds during spring tide. These are then on-grown using the natural food of the water body, often in combination with a variety of other species e.g. milkfish. Since the occurrence of fry is seasonal and the numbers unpredictable, the production of shrimp is unreliable. It is therefore impossible to exactly state the initial stocking density, although it is generally to be below 10 m-2 with a yield less than 500 kg ha-1 yr-1. Unregulated stocking by this method also allows predators and competitors to enter the pond, further reducing the efficacy of this method. Supplementary stocking with either wild-caught or hatchery-reared fry is now more common, however, the former too is becoming less reliable as over-fishing and habitat destruction result in lower numbers of wild-caught shrimp fry being available. In India for example there is a wasted 'by-catch' of 9 kg of young fish and shellfish for every 1 kg of shrimp seed obtained. It is estimated that 100 organisms are destroyed for every shrimp fry collected to supply extensive shrimp ponds ('gers') in Bangladesh; as many as 80% of the people in some coastal areas of the country are engaged in aquaculture seed collection (personal observations). The large tracts of, increasingly expensive, land required to profitably farm using these methods are becoming less easy to justify. To convert large areas of highly productive mangrove forest to large swathes of fish/shrimp ponds, as has occurred in several Southeast Asian countries, notably the Philippines (Primavera, 1994), would seem to be highly undesirable. One possible exception to this is the 'tambak tampung sari' system now being employed in Indonesia (this integrated mangrove- aquaculture system is discussed in the section on integrated mangrove management). Intensive culture methods Intensive culture methods for shrimp emerged during the 1970's, pioneered by the Taiwanese after the development of successful hatchery techniques for Peneaus monodon. Chua and Tech (1990) have cited four main reasons for the rapid increase in intensification: development of hatchery techniques and the capability of producing large amounts of larval food formulation of artificial feeds which enabled large-scale commercialization engineering improvements and innovations in aquaculture facilities such as pond designs, paddle wheels, aerators etc., boosting the carrying capacity of growout and hatchery facilities upgrading of technical skills in farm operation and management With the ability to produce seed at will, thus ensuring a large and reliable supply, improvements in technology/husbandry and the rapid increase in world shrimp prices, the time was ripe for an increase in the level of intensification. However, it soon became apparent that all was not well. The intensive shrimp farming industry, in Taiwan and later in Thailand, has always been prone to over-expansion (Sheeks, 1989). One reason for this was that, despite the high initial investment cost, the first harvest could be obtained within four months and as many as three crops could be obtained annually. At first it seemed that large profit margins could be realised indefinitely (Chong, 1990). In 1987, for example, some Thai shrimp farms realised profits as high as 1 million baht (US$ 40,000) from a 1 ha. pond in a single crop. However, once intensive culture was adopted, land prices rose rapidly. This forced new investors into greater intensification in order to pay back the spiralling investment costs. High interest loans taken by many small farmers also encouraged rapid repayment and hence, overloading of the system. This was further aggravated by the high operating costs and strong market competition, until there was no simple alternative to increasing intensity (Sheeks, 1989). The most dramatic crashes thus far have occurred in Taiwan, where it has occurred on three separate occasions despite the lowering of stocking densities and the switch to "disease-resistant" species (Briggs, 1994). Shrimp farming along the head of the Gulf of Thailand met a similar fate when the industry crashed after just two growout seasons, with the region's production falling from 70% to 20 % of the countries' total. In both cases, the over-exploitation of coastal resources, industrial pollution, improper site selection (particularly with regard to water supply and discharge), poor farm design and management practices, over-stocking and self-pollution, combined with the "get-rich-quick" mentality of shrimp farming speculators, led to severe environmental degradation. (McClellan, 1991; Chua, 1993; Fegan, 1993; Phillips et al., 1993). Many of the Central Thai farmers have now migrated south, where there is less industrial pollution, higher quality seawater and better direct access to the sea. Despite these advantages, a 1992 Overseas Development Administration (ODA) survey reported that, in one region, after only three growout seasons, pond productivity had fallen by 24% on average and that 75% of farms were experiencing disease problems (Phillips, unpublished data). There is growing evidence that the environmental impacts of shrimp farming play a significant role in the disease outbreaks and subsequent crop loss, as a result of overloading the carrying capacity of the environment (Phillips et al., 1993). The increasing incidence of disease and the environmental degradation has led to speculation over the continuing prosperity, even the survival of marine shrimp farming (Pruder, 1992). It is now understood that Monodon baculovirus (MBV), the viral disease which has been blamed for the crashes of the Taiwanese and Central Thai shrimp farming industries, as well as other opportunistic diseases, including Vibrio spp., other bacteria and protozoans, are not particularly pathogenic if shrimp are kept in optimal conditions (Nash, 1988; Lin, 1989; Sheeks, 1989; Csavas, 1990). It is therefore the mismanagement of the ecosystem leading to pond conditions stressful to shrimp, which is the root cause of most shrimp diseases (Lin, 1989). Despite the fact that Taiwanese shrimp production techniques have already been shown to be unsustainable, the short-term financial success of shrimp production in Taiwan and Thailand has encouraged other developing countries to ask them for help in developing their own industries (Briggs, 1994). Indeed the Taiwanese government is now funding a feasibility study for a relocation project that would encourage Taiwanese farmers to establish operations abroad, particularly in Latin America and other Southeast Asian countries, thus avoiding high production costs and further environmental degradation in Taiwan (Anon, 1993). Similarly, leading companies in Thailand are strongly promoting shrimp farming in countries such as India and Vietnam (CP Newsletter, 1994). The Taiwanese government presumably feels that it is better to decimate the coastlines of other countries for it's own economic gain. In other words, the economic incentives from shrimp farming are still so high that the coastal resources of these less developed countries are being placed at risk. With the unrestricted expansion of intensive coastal shrimp farming have come a multitude of environmental problems. Apart from the destruction of mangrove forests, they include the salination of agricultural land and freshwater aquifers, land subsidence and deteriorating water quality due to sediment loadings and nutrification. The industry itself has become concerned about sustainability, as shown by the trend towards lower shrimp stocking rates to combat stress and disease in high density shrimp culture (Phillips et al, 1993). Semi-intensive culture practices As the name implies, these culture practices fall somewhere in between extensive and intensive methods of production. Ponds are stocked with hatchery reared or wild caught post-larvae and the farmer relies on the natural productivity of the pond along with supplementary artificial feeds. Although at one time thought to be simply an intermediate stage between 'low technology' extensive and 'high technology' intensive practices, semi-intensive farming is regarded by many experts as the only long-term, sustainable way to produce shrimp. Economic analysis too has shown that while all systems from extensive to highly intensive are profitable whilst the market value of shrimp remains high, only semi-intensive systems can easily survive a 20% fluctuation in inputs and/or market value (Csavas, 1988, 1990; Chong, 1990; Primavera, 1994). Intensive operators, who have a profit per unit area of culture but with a narrow profit margin per volume and extensive operators, who have low production levels, would be driven into the red under these conditions. With increasing competition from many different areas forcing profit per kilogram down, intensive producers will be at a disadvantage. Since semi-intensive culture also has less environmental impact, many researchers are now strongly advocating, along with improved shrimp pond management, a reduction in the dependence on intensive systems (Csavas, 1988, 1990; Primavera, 1989; Fast & Lester, 1992; Macintosh & Phillips, 1992). Unsustainable Aquaculture Whilst semi-intensive shrimp farming may be less detrimental to the environment than other systems of shrimp production, there is still some doubt about its long-term sustainability. They still require large amounts of clean, nutrient-rich water, fish and cereals (in the form of pellets) for feed and wild shrimp fry and/or broodstock from healthy mangroves (Naamin, 1991; Paw and Chua, 1991 cited in Folke and Kautsky, 1994). The great majority of shrimp farms are throughput systems, that is resources are pumped in, used up, and pumped out in a linear fashion, rather than being recycled. The result of this is accumulation of wastes in the surrounding ecosystems which can lead to severe (and sometimes irreversible) problems. The continuing high resource demands of such systems makes them unsustainable in the long-term. Although it may not be immediately apparent, throughput systems depend entirely on a resource base which directly or indirectly, is linked to the very ecosystems that they degrade. The failure of throughput systems to recognize and respond to these linkages makes them inherently unstable and likely to collapse, as the degradation of their support systems remains unnoticed (Folke and Kautsky, 1994). Folke and Kautsky (1994) have made an attempt to quantify the spatial ecosystem support, or ecological footprint, that is required to sustain semi-intensive shrimp farms on the Caribbean coast of Columbia. They did this by estimating the following: sea surface area and agricultural area required to sustain the equivalent yield of fishmeal and cereal in feed pellets needed for a 1 ha. shrimp pond mangrove post-larval area required to produce sufficient amounts of shrimp post-larvae; the mangrove support area necessary to produce litterfall/detritus that was assumed to contribute 30% to the shrimps' diet extent of the support system necessary to provide water for the ponds and to receive their discharge ecosystem area needed to sequester the carbon dioxide released by industrial energy inputs (both directly and indirectly). From these calculations they suggest that a semi-intensive shrimp farm requires a spatial ecosystem support system, or ecological footprint, that is 35-190 times as large as the surface area of the farm. Clearly, this is far greater than the relative amount of mangrove and other support areas that have been left in most major shrimp farming regions. The highly intensive nature of the throughput system as is now common in shrimp farming is only possible because of the high market value of of the product. However it is clear that socio-economic factors must be taken into account when assessing the benefits of intensive shrimp aquaculture operations. The development of sustainable shrimp farming will require that the real price of shrimp production, including those of impairment, degradation and destruction of the ecosystem and environment be taken into serious consideration (Chong, 1990). These are costs that never appear on any farm ledger and which are difficult to estimate, but which are essential in gauging the full impact of these production systems (Briggs, 1994). If the value to society of the life-supporting environment is not recognized, there is a severe risk that a short period of prosperous growth of the aquaculture industry, due to intensive ecosystem exploitation, will turn into severe ecological, economic and social problems, that counteracts the possibility for sustainable development (Folke and Kautsky, 1994b) There is, however, a large potential for recycling of resources and reduction of waste and pollutants. Other Aquaculture Water quality processes in shrimp ponds and identified problems The maintenance of a low stress rearing environment requires good pond water quality. In intensive farms the high stocking densities involved require high levels of applied feed resulting in a need for the rapid removal of waste products, chiefly dead plankton (from the pond bloom) and nitrogen and phosphorus (from unassimilated feed). If this is not achieved the water quality of the pond will deteriorate causing stress to the shrimp and a corresponding susceptibility to disease (Lin, 1989; Chua et al.,1989; Chien, 1992). There are several water quality parameters which affect shrimp production : In South America, aquaculturalists have generally preferred salt flats and inland areas for the construction of ponds because of the lower land preparation and pond construction costs (Snedaker et al. 1986). However, the extremely rapid development of the industry has led to shortages of more suitable sites and large areas of mangroves have been converted to aquaculture. Prior to 1980, only Ecuador had a sizeable area devoted to shrimp aquaculture, but inspired by perceived financial success, other Central and South American countries are encouraging similar aquaculture development (ibid.). Siddall et al. (19??) quote 2,200 ha as the area being allocated converted to shrimp farming (unlicensed operators, which are more frequently in mangroves, may not be fully included in this figure). Approximately 5% of Panama's mangrove have been converted to shrimp ponds (ibid.). Approx. 25% of mangroves have been converted to ponds in Ecuador (Siddall et al. 19??). In Mexico shrimp mariculture is actively reserved for coops and not private farms. Extensive shrimp mariculture methods (by closing off lagoons) will therefore continue as the dominant production system. In Panama, shrimp mariculture had a relatively small impact on mangroves because semi-intensive rather than extensive systems, clear administrative framework, and good information for management purposes. Authorities have co-operated to steer investors away from mangrove to salt flats by publishing costs of construction in m. areas and risks from acid sulphate soils. Suitable salt flat areas avail. plus semi-intensive nature, plus presence of Ralston-Purina set example. Shrimp culture has yet to become established in any African nation (p.49), although other species are produced (mostly finfish) for domestic consumption using earthen ponds, or brush parks or fish cages in lagoons (Coche 1982). Ardill (1982) reported preliminary planning for shrimp pond construction in Madagascar (200ha) and Kenya (50ha) and entrepreneurs have shown strong recent interest in starting large shrimp farms in these countries; efforts have also been made to start commercial shrimp farming in the Gambia using imported black tiger shrimp (personal observations). The Ivory Coast, Benin, Ghana, and Nigeria are other parts of Africa considered physically suited to shrimp mariculture. Integrated Systems of Mangrove Management Small-scale Systems For economic reasons integrated systems usually seek to combine the sustainability of mangrove forest conservation, or rotational forest management systems, with the high income potential from mangrove fisheries or aquaculture. One traditional form of this concept are the 'tambaks' in Indonesia - extensive ponds for trapping and holding fish and shellfish, where strips of mangrove forest are retained on higher ground within the ponds and trees are planted around the dykes to provide soil stability, shade and a source of organic enrichment (via leaf detritus) to the ponds. Originally these tambaks were created in northern Java for milkfish, with shrimp and crabs trapped as a secondary crop (described by Schuster, 19??). Tambaks are now found throughout Indonesia and they are principally specialised for shrimp farming, especially in Sulawesi. However because of over expansion of tambaks, and other forms of coastal habitat development, the relative areas of mangroves to ponds has declined to a point where their natural productivity is extremely low. Since the loss of mangrove resources also affects their function as nursery sites for juvenile fish and shellfish, wild shrimp fry are now much rarer, making it necessary for tambak operators to switch towards hatchery produced post larvae. The latter are generally regarded as being 'weaker' than wild fry and consequently survival rates and production are often poor (Sulawesi, personal observation). In Indonesia a modern development from the tambak concept is 'tambak tumpang sari' or 'pond forest' (described by Sukardjo, 199*). This integrated system developed on the northern coast of west Java in the 1980s as a response to the problems of lack of income opportunities for poor coastal communities. Due to coastal erosion caused by mangrove degradation, the State Forestry Corporation undertook reforestation using Rhizophora species. Behind the protective mangrove zone, bunded fishponds were constructed with mangrove trees planted as seedlings in the elevated the central part (Fig. 2). A main canal with a water gate allowed water exchange in the pond; the pond itself had a sluice gate and fish ditches around and across the pond bottom to create a good environment for aquaculture. In the first phase of implementation (3 to 5 years) this system operated as a conventional pond; it was enriched by adding mangroves leaves as a manure. Fish and shrimp entered via the supply canal, then could be harvested virtually on a daily basis in small quantities once the pond biomass had built up. By the second phase (5 to 10 years) growth of the central mangrove had created a forest of saplings or small trees about 5 m tall. At this point the Forest Corporation could begin some exploitation of the mangrove resource as the species planted (Rhizophora) has high economic value for fuelwood and poles. It should be noted that under this modern Indonesian system, the local people did not own the land or fishponds, but were simply employed by the government agency to undertake the mangrove planting. This generated the equivalent of 4000 man days of work for each hectare of tumpang sari developed (Sukardjo, 199*). By including the aquaculture component, local poor people also benefited from a significant income from aquatic products for 3-5 years until the forest had developed. By this point conditions in the pond for aquaculture had declined because of crowding by the trees and an increase in fish predators (e.g. birds and otters) and pest species. Although improvements to the management of the system are required in order to increase the longer term benefits from mangrove fisheries, the concept is believed to be sound and a possible model for wider adoption in Indonesia (Sukardjo and Toro, 1987). More realistically, it provides temporary employment and income for some local people, and for the Forestry Corporation an efficient means of reforesting degraded coastal mangroves, but it does not create community ownership and management of the resource. After five years the fishermen cannot buy the fishponds (and the mangrove forest is the property of the Forestry Corporation), although some improvement in coastal fish catches may be expected. The integration of mangrove forestry with aquaculture is also being tried in Vietnam and Malaysia using crab rearing as the principal income generating activity. In this case the natural mangrove topography is retained by simply fencing off a small area of forest to create a 'crab pen'. The central mangrove area provides a natural habitat for Scylla serrata which are bought from traditional fishermen, stocked in the pens, and fed trash fish. In Sematan, Sarawak a small number of fishermen owners are operating crab pens successfully in this way (personal observation). Although it is too early to state what the long term sustainability will be, the economic returns are good (after six or seven months in the ponds the crabs are exported to Singapore). The method is certainly more integrated than conventional crab ponds, since there is the minimum of disruption to the mangrove forest or soil topography. Because the fences are wooden (mangrove saplings or bamboo), there is a natural tidal exchange through the pens. Some thinning of the central mangrove (to extract poles and firewood) and replanting with seedlings could be developed in this type of forestry-aquaculture system. Large-scale Systems There are few examples of large-scale mangrove forestry-fisheries management systems, but several tropical countries are attempting to introduce the concept of 'zoning', whereby areas of mangrove forest are conserved to provide buffer zones for coastal protection and fisheries support, while forest exploitation, aquaculture development, or other economic activities, are being confined to the inner mangrove zone and to coastal land above the intertidal zone. In Thailand, for example, the problems of poor coastal water quality associated with waste accumulation from intensive shrimp farms has prompted a ban on shrimp farm development on mangrove land. Instead, shrimp farmers are being encouraged to construct ponds behind the mangrove zone so that the latter can serve as a natural biological filter to improve water quality before it reaches the ponds. In the largest mangrove area in Thailand, the Ranong ecosystem, areas of concession forest awarded to charcoal producers are gradually being taken back under the direct control of the Royal Thai Forest Department. The mangroves will then be managed as conservation forest in recognition of their greater value to fisheries and coastal protection. It is also of benefit to the many shrimp farms which are being built in land immediately behind this extensive mangrove delta. Since Ranong is the wettest region of Thailand (Macintosh et al, 1991), particular importance is attached to the value of the mangroves to trap sediments and reduce erosion. Conservation and Resource Enhancement Protection of Biodiversity Saenger et al. (1983) provide a summary of the types of reserves, including mangroves, designated by different countries. Traditionally, mangroves and other tropical wetlands have not been considered particularly rich in species, especially in comparison to the extremely high biodiversity found in coral reefs and rainforests. In conservation terms however, this view is counter-balanced by the extremely high abundance and productivity of certain wetland plant and animal species. These characteristics of mangroves make them important for other wildlife, specifically:- as dry season refugia and subsequently as sources for re-colonisation of surrounding habitats, as feeding grounds for resident and migrant wildlife, as breeding and nursery grounds, as a link between terrestrial and marine ecosystems. The abundance of wildlife probably attracted early natural history enthusiasts (and hunters) to the estuaries, islands and lagoons habitually used by nesting and over-wintering waterfowl. Consequently, the significance of mangroves and associated habitats is much better appreciated for birds than any other group of wildlife, and a number of conservation initiatives have focused on their protection. In Indonesia, endangered species associated with mangroves include the milky stork and less adjutant stork, while mangrove mudflats serve as feeding areas for huge numbers of migratory waterbirds, including rare species (Silvius, 1987). In Mauritania, the tidal flats of the Banc d'Arguin National Park provide a wintering site for some 3 million shorebirds every year (IUCN 1990). It is more recent research that has highlighted the other species of conservation concern for which mangroves are an important ecosystem. Moreover, as research has continued, examination of the large range of niches available for use (a three dimensional space in the terrestrial realm like a normal forest, and a three dimensional in an aquatic one, linked by a highly dynamic inter-tidal zone), has revealed greater biodiversity than was originally expected. Lopez et al. (1988) provide a summary of references giving lists of invertebrate species associated with mangroves and benthic habitats adjacent to mangroves. Viewed in isolation, the mangrove itself is still of only moderate significance, but it assumes far great importance when its fundamental ecological linkages with other habitats are taken into account. Thus a great number and variety of birds, mammals, fish and invertebrates utilise mangroves during at least one part of their life cycle. Those species of greatest conservation concern that are associated with mangroves have been reviewed by Saenger et al. (1983). Of 21 crocodile species recognised by CITES, seven are endangered and of these, *** inhabit mangrove dominated environments. For example, Silvius (1987) mentions that conversion of riverine mangroves in Indonesia will further reduce the habitat available to three already endangered species in Indonesia: Crocodilus porosus, C. novaeguineae and Tomistoma schelegelii. Large mammals are especially vulnerable to human intervention because of their need for large forest ranges and their value to poachers. In West Africa, the Caribbean, southern USA and northern Latin America, manatees have been brought close to extinction in many areas by hunting and other disturbance (IUCN 1990). Quiet tidal creeks where overhanging prop roots give production from predators, are thought to be especially important for calving and nursery areas for these creatures. In Thailand the leaf monkey, Presbytis cristata and in Malaysia and Indonesia, the proboscis monkey Nasalis larvatus, are both vulnerable species which inhabit mangroves (IUCN 1990), while the Malayan sun bear and the tapir are similarly threatened by forest destruction (Silvius, 1987). In India and Bangladesh, the relative isolation of the Sunderbans mangroves have made them the largest remaining habitat of the Bengal tiger Panthera tigris (IUCN). However human population pressure is perhaps the greatest threat to conservation of mangrove wildlife (see demographic predictions, section 6.5). Major international efforts have contributed to some conservation success with the Bengal tiger, but habitat degradation in the Sunderbans is a slow timebomb, which ultimately will be just as lethal for the tiger as the hunter's bullet. Fourteen species of mammal have already disappeared from Bangladesh in the past 20-25 years (Nuruzzaman, 1993). Recreation and Ecotourism At first sight, the scope for recreational use of mangrove ecosystems may appear to be limited, but it is in fact an important aspect of the management of mangroves in Australia (boating and recreational angling). There are also some developing country examples. In Thailand there is considerable value attached to the mangroves in Phangna Bay as a component of the bay's environment which tourists from Phuket can visit in pleasure boats. In some of the Caribbean islands, fringing mangroves are regarded as important indirectly to tourism as they act as sediment traps, thereby protecting the adjacent coral reefs from siltation - the tourist economy of these islands being strongly dependent on the attractiveness of their reef environments. It is also probable that mangroves will feature in future as one of the tropical environments attractive to the growing developments in ecotourism. Boat trips through mangrove ecosystems are easy to organise and elevated walkways can be built for easy access to the forest environment. Walkways constructed by the Royal Thai Forest Department in a forest reserve area within the Ranong mangrove ecosystem have proved to be highly successful for research and educational activities involving large groups of people (Macintosh, et al, 1992). In suitable areas, this concept is readily adaptable to make it attractive to a wider audience through ecotourism; consequently the latter should be included as part of coastal zone planning where it is considered to have potential. However, ecotourism must be clearly distinguished from tourism in its general context, the latter having had a history usually associated with negative impacts on mangroves. Mangrove Afforestation Mangroves are one of the easiest tropical forest types to generate because of their reproductive biology and adaptations to intertidal conditions (reviewed by Tomlinson 19??). The species of most economic importance (Rhizophora and Bruguiera) produce viviparous spear-like seeds which can be collected as propagules (the first stage seedling) from mother trees and planted directly into soft coastal sediments for afforestation purposes. Seedlings of other mangroves, such as Avicennia and Sonneratia, which include more pioneer species that can serve a valuable coastal protection function, are easily reared from seeds in nurseries (described by Siddiqi et al, 1993). Afforestation has unlimited scope to increase the mangrove resource base, protect fragile tropical coastlines and perhaps also to enhance biodiversity and fisheries productivity. Mangrove afforestation is proceeding on a large scale in Bangladesh and Vietnam principally to provide coastal protection in typhoon-prone areas, but also to accelerate the rate of reclamation of coastal land created by natural accretion, and to generate economic benefits to poor coastal communities (FAO, 1982; Siddiqi and Khan, 1990; SCF, 1992; Hong and San, 1993). Mangrove afforestation started in Bangladesh in 1966 and by 1990 plantations covering 120,000 ha were established; 90% of this total was planted with Sonneratia and Avicennia species (Siddiqui et al, 1993), reflecting the success of these mangrove types as pioneer species. However most of the economic mangrove tree species in Bangladesh have been tested as plantations on newly accreted land, including Heritiera fomes (the most important timber tree in the Sunderbans) plus species of Bruguiera, Xylocarpus and Excoecaria (Siddiqi and Khan, 1990). In time, it is anticipated that as the pioneer mangrove dies off, secondary planting with these more economic species will be necessary. In central and northern Vietnam typhoons are virtually an annual occurrence which have necessitated the construction of a major coastal seadyke system to protect agricultural land and homesteads from storm damage and flooding. However, the seadykes, which are of earth, or earth and stone, construction, are easily damaged by storms, or overtopped by tidal waves; loss of life and property and saltwater destruction of crops have been regular occurrences (SCF, 1992). Future Trends and Policy Development For the foreseeable future, coastal zones will come under increasing pressure to sustain population growth and the expansion and diversification of national economies. There is a major challenge to meet in improving the management of coastal areas to accommodate this growth (Burbridge 1993). Mapping and Resource Analysis Remote sensing and Geographical Information Systems have both gone through major technological developments during the 1980s and are destined to become increasingly important inputs into ICZM activity. Improvements in satellite technology mean that in future resource managers will be provided with far more accurate assessments of mangrove areas and their rates of change. Remote sensors carried on space platforms have come into widespread use, so mapping large areas is quicker and cheaper. Many regional and national inventories have already used satellite imagery (Zisman 1992, Siripong et al., Woodfine 1993, Susanto et al. 1985). Problems obtaining cloud-free cover still occur (Macintosh et al. 1991), spurring investigations into the scope of radar for forest and other mapping work. Significant achievements have nonetheless been made in mangrove mapping, as well as other ICZM-related fields, for example fisheries productivity assessments (Gowda et al. 1993), suspended sediment modelling (Jensen et al. 1989) and flood risk (Blasco et al. 1989). ICZM however is as much about localised and practical action as it is about strategic planning. It therefore also needs larger scale information than commercially available satellite data can provide. New methods for computerised scanning, photogrammetry and manipulation of air photos means that this traditional large scale data source remains important. Efforts are also being made to develop aircraft-borne sensors to collect information from a similar range of electromagnetic wavelengths to that of satellites, but at large scales. The potential role of GIS in ICZM has three main assets, data collation and storage, data analysis, and in producing output for technical and publicity use (Zisman, 1993). To date, the actual role of GIS is limited to by the state of standard software available, the relatively clumsy methods of data capture still prevailing, and the lack of comprehensive, high quality coastal zone data available. Full ICZM applications are at the developmental stages in all but a few cases. Straight forward analyses are now routine (eg Pak Phanang Bay), and results do feed into policy formulation (CORIN 1991). More sophisticated sectorial or bi-sectorial applications also now exist, but many are still being tested and revised (Box on Aquaculture Site Selection). Finally, it is important if rather obvious, to stress that the use of these technologies does not itself, guarantee better resource assessment. Measures to ensure high data quality, analytical rigour, hardware maintenance and good organizational management are all necessary if ICZM is to capitalise on them. Integrated Coastal Zone Management There is increasing political awareness of the need for CZM in developing countries and conceptual models are being developed for the better integration of human activities with natural coastal processes to achieve 'sustainability' within set socio-economic conditions and ecosystem carrying capacity. However in most tropical countries there are still significant institutional barriers to integrated environmental management because of the sectoral division of responsibilities between government agencies. Adequate environmental legislation is, in most cases, either lacking or poorly implemented and patrolled. The objectives of CZM will only be realized when there is better coordination between agencies and departments, and when greater attention is given to the needs of coastal communities living within the target areas. For example, in Benin, West Africa, Klingelbiel (1981) cites lack of proper consultation between port and lagoon authorities as a factor behind events which inadvertently led to the complete blockage by sand of the mouth of the Nokoue Lagoon, thereby preventing water exchange and the migration of fish which spend part of their life cycle in lagoon environments, processes vital to lagoon fisheries. In the context of West African lagoon-mangrove systems, John and Lawson (1990) note how local fishermen actually have a strong interest in artificially keeping the mouths of lagoons open for this reason. The future development of CZM with respect to mangrove ecosystems must emphasise planning, coordination, implementation and legislative enforcement in policy development. Thus, the greatest challenge for the future is to achieve a restructuring of responsibilities at the various government levels, from national to local, applicable to CZM, and to introduce effective coordinating mechanisms within government and between government and coastal communities. Public Awareness, Education and Research The changing perception of mangroves within the last 20 years, from 'wastelands' to 'valuable ecosystems' owes much to a rise in public awareness promoted by effective lobbying by international agencies, conservation groups and scientists, who increasingly have been able to strengthen their arguments with scientific research findings. Major programmes of research, training or management for tropical wetlands have been supported by e.g. IUCN, UNDP/UNESCO, the European Union and some bilateral donors including ODA; while regional organizations (e.g. Asian Wetlands Bureau), national bodies and NGOs have been effective in popularising the environmental importance of mangroves at regional, national and local levels. In the Asia-Pacific region, national mangrove committees set up at governmental level and a Regional Task Force, both instigated with assistance from UNDP/UNESCO, have been particularly effective in influencing government policy in favour of mangrove conservation and better management. There is now an international organization dedicated to research and information dissemination on mangroves: ISME (International Society for Mangrove Ecosystems), based in Okinawa. Understandably, this greater awareness of the value of mangroves is helping to release more funding for mangrove ecosystem research and for the improved training and curriculum development in schools and universities in the tropics. At community level, far greater emphasis is being placed on involving local people in the decision- making process with regards to wetlands management. Public awareness and local education needs are now seen as priorities in international projects aimed at the integrated management or rehabilitation of mangroves, while NGOs enjoy stronger support at official levels in their efforts to assist coastal community needs and raise public awareness of their problems. In Central Vietnam, for example, Save the Children Fund, U.K. (SCF), found that public meetings were an effective means of explaining the objectives and value of a mangrove afforestation project in HaTinh province (SCF, 1992). The project became successful largely because the local coastal villagers were asked to become directly involved. At official level, the work of SCF was publicised on television and in newspapers by the District Administration, giving the project a significant impact beyond its target group. Environmentally focused coastal resource management projects, with strong community participation, are likely to be more strongly supported in the future. Demographic Trends Settlement and Industrialisation The coastal zone has become the foci for population and economic activities of many nations (Burbridge, 1993). Currently, estimates suggest that 50-70% of the World's 5.3 billion population live in the coastal zone (Ibid), and this proportion is increasing. From 1980 to 2000, estimates suggest that coastal urban population will increase by 380 million (WRI 1993). By 2020, UNCED Agenda 21 report that up to 75% of the world population could be living within 60km of the shore and that the World's population at that point will be around 8 billion. Taking account of differences in population structure of industrialised and less industrialised countries, approximately 95% of this future population growth will occur in the latter (Knecht et al. 1993). The population of coastal areas and their growth rates do vary widely between nations (Table ?), with differing historic influences affecting settlement patterns. Projected populations for various countries are shown in Figure ?. Reasons for Concentrated Settlement The needs to be located in coastal or estuarine sites for access to sea or river trading routes historically has been a major influence in creating coastal settlements. Coastal ecosystems, being some of the most productive, have also attracted people to exploit them, and in addition, the coast's ability to support many different uses has encouraged a wide range of development. The occurrence of high quality soils with favourable slopes within the lower reaches of watersheds has been a further factor. Colonialisation also has had a marked affect, either enhancing existing coastal settlement patterns, or establishing new ones (often re-locating or importing populations simultaneously) to facilitate the exploitation and export of raw materials. (Footnote: This type of colonisation could be said to be continuing in Indonesia.) More recently, exploitation of oil, gas and other minerals has lead to the rapid development of the coastal zone in various nations (Brunei, Ecuador, Mexico etc.) (Burbridge 1993). The growth of tourism industry has been strongly bound to the coast, and has been responsible for widespread coastal settlement (see Section for further details of this). In Asia, a range of these factors have combined to ensure a very long tradition of coastal settlement in nearly all cases (Anderson 1981), stretching back over the past 1000 years (Burbridge 1993). Taking Indonesia as an example, it is estimated that 75% of settlements of more than 100,000 people are located in coastal areas (Burbridge 1994). For Sri Lanka, some 84% of the urban population lives in large coastal cities. In other regions, notably South America, features of the coastal zone such as infertile soils, poor drainage and disease have combined to discourage coastal settlement, and populations are therefore generally concentrated in the uplands (Snedaker et al. 19??). The impacts of settlements and industry on mangrove range from enormous (Singapore and Hong Kong) to relatively minor in countries of lower population density. Mangroves are affected both by conversion to new land use and by the infrastructure serving settlements. Clearance for housing, industry, tourism development are the most significant causes of loss (Saenger et al. 1983), with subsidiary destruction from roads, airports and waste disposal also considered significant (ibid). Indirect degradation has also resulted from changes to hydrology, pest control (drainage and spraying), recreation pressure and pollution. Since the early 1970s, there has been an increase in industrial harbour/port construction for the transshipment of ores, fuels and other raw materials. This increase has been due largely to the development of new mines and to modernisation of shipping and handling technologies (Saenger et al. 1983). Settlement Through Planned Relocation Burbridge (1993) notes that shortages of upland land is forcing some countries to initiate settlements in coastal areas that, in many respects, are marginal by virtue of poor soils, susceptibility to natural hazards, or cost of conversion. In Indonesia, settlement patterns meant that 62% of the population were living on Java and Bali, comprising only 7% of Indonesia's land area (Soewardi 1983). Small scale migration had been taken place since before the Second World War, but in 1969 the scale of this increased dramatically when the Indonesian government launched a massive programme of transmigration. Soemodihardjo (1984) has reviewed the impacts of transmigration on the mangrove ecosystems of recipient regions. Large areas of Nypa palm have been cleared and converted to swamp rice cultivation, and mangroves have also been destroyed by canal construction. The location of the largest shrimp farm in the world, in Sumatra, occupies several thousand hectares of former coastal mangrove and is a project originally associated with the transmigration programme. Burbridge (1993) provides additional insights into the social and project management aspects of this massive exercise in human relocation. Conversely, there are cases of intentional relocation away from the coast. Brasilia is one example that has achieved moderate success. In the aftermath of a hurricane which decimated Belize City (located on a mangrove peninsula), aid agencies contributed to the establishment of a new Belizean capital inland, away from the flood risk zone. Due to inertia, however, assisted perhaps by the absence of major hurricanes since, urban movement inland has been limited, and Belize City remains, and is growing at the expense of mangrove forests. Migration Rural to urban migration is a well studied geographical phenomenon, although not specifically in relation to the coastal zone (Burbridge 1993). Burbridge (1981) discusses examples in Southeast Asia where destabilisation of rural coastal communities has led to migration to urban areas where fishermen (now unemployed) have few skills to allow them to adapt to urban economic opportunities. Goldberg (1993) examined the migration from low to higher latitude coastal zones, and found four regions where it is occurring. Three (Mexico and Guatemala to California; Haiti and Cuba to Florida; and the Bahia region to the Rio Grande region of Brazil) have implications, both positive and negative, for the future condition of mangroves. The paradox, highlighted by Burbridge (1993), is that higher fisheries outputs are required to help feed these burgeoning coastal settlements, yet the settlements themselves, by directly converting mangroves and indirectly by polluting nearshore environments, are actually reducing the fisheries productivity of surrounding waters. Siddall et al. (19??), for example, cite urban expansion as a major cause of mangrove clearance in Panama. Fishermen themselves are also displaced. Burbridge (1993) quotes examples of this for Singapore, the Philippines and India where fishing communities were uprooted to make way for, respectively, a new airport, housing estates, and tourist resorts. There are positive examples as well however. Following destruction of 40,000 ha of mangroves by defoliants during the war with America, one stimulus for the Vietnamese to replant mangroves in Can Gio (formerly Duyen Hai) coastal region southeast of Ho Chi Minh City was to protect this huge city from flooding and to provide a sustainable supply of mangrove fuelwood through efficient forest management. Currently, the now substantial areas of forest (planted from 1979 onwards) also contribute to a significantly increased fish production and thereby enhance the income opportunities of the local inhabitants. c d Ö × ã ä ò ô õ ] ^ _ n o q r Ü Ý Þ n o p  Ž  ‘ ù ú û ; < > ? © ª « Ñ Ò Ô Õ ? @ A v w y z ä õíõíàíÓõíõÈíàíõíõ½íàíõíõ²íàíõíõ§íàíõíõœíàíõíõ‘íàíõíõ jé h_OÄ Ujì h_OÄ Ujó h_OÄ Ujö h_OÄ Ujù h_OÄ Uj h_OÄ Uh_OÄ h_OÄ 0J mH sH h_OÄ h_OÄ 0J mH sH j h_OÄ Uh_OÄ h_OÄ mH sH 4 # c ô  ¬ = å “ … ‡ — ¶ )! Ä" ö% ô) ¤+ ¬- ±/ R2 l2 #6 a6 „6 C9 Î; ú p# Y õ p# Ô ð p# ¬ ð ð ð ð ð ð ë p# ¬ æ p# á p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ ð p# ¬ á p# ¬ ð p# ¬ æ p# á p# ¬ ð p# ¬ ð p# ¬ gd_OÄ gd_OÄ gd_OÄ gd_OÄ gd_OÄ gd_OÄ Tž þ ä å æ … † ‡ œ    ¡ ' ( * + – — ˜ © ª ¬ ­ . / 1 2  ž Ÿ ¨ © ¬ ­ O P R S ½ ¾ ¿ Ú Û ôìßìÔìÔÉìßìÔìÔ¾ìßìÔìÔ³ìßìÔìÔ¨ìßìÔìԝìßìÔìԒìßìÔìԇìßì jÕ h_OÄ UjÜ h_OÄ UjÝ h_OÄ UjÞ h_OÄ Ujß h_OÄ Ujà h_OÄ Ujã h_OÄ Uh_OÄ h_OÄ mH sH h_OÄ h_OÄ 0J mH sH j h_OÄ Ujæ h_OÄ U 5Û Ý Þ H I J a b e f Ñ Ò Ó ç è ê ë V W X a b d e Ð Ñ Ò ß à â ã N O P Y Z \ ] È É Ê Ù Ú Ý Þ H I J e f h i Ó Ô õíõâíÕíõíõÊíÕíõíõ¿íÕíõíõ´íÕíõíõ©íÕíõíõžíÕíõíõ“íÕíõíõˆ jÇ h_OÄ UjÊ h_OÄ UjË h_OÄ UjÌ h_OÄ UjÍ h_OÄ UjÎ h_OÄ UjÏ h_OÄ Uh_OÄ h_OÄ 0J mH sH jÒ h_OÄ Uj h_OÄ Uh_OÄ h_OÄ mH sH 5Ô Õ ñ ò ô õ _ ` a „ … ‡ ˆ ò ó ô ! " Œ  Ž ª « ­ ® 7 8 ; < § ¨ © · ¸ º » & ' ( 9 : = > ¦ § ¨ Ô Õ × Ø B ÷ê÷ß÷ßÔ÷ê÷ß÷ßÉ÷ê÷ß÷ß¾÷ê÷ß÷ß³÷ê÷ß÷ߨ÷ê÷ß÷ߝ÷ê÷ß÷ߒ÷ê÷ß÷ß j¶ h_OÄ Uj· h_OÄ Uj¸ h_OÄ Uj» h_OÄ Uj¾ h_OÄ UjÁ h_OÄ UjÄ h_OÄ Uh_OÄ h_OÄ mH sH h_OÄ h_OÄ 0J mH sH j h_OÄ U 7B C D [ \ ^ _ É Ê Ë â ã å æ N O P x y { | æ ç è t u v  ‘ “ ” ü ý þ % & ( ) “ ” • ¶ · ¹ º $ % & L M ôìßìÔìÔÉìßìÔìÔ¾ìßìÔìÔ³ìßìÔìÔ¨ìßìÔìԝìßìÔìԒìßìÔìԇìßì j’# h_OÄ Uj•" h_OÄ Ujœ! h_OÄ UjŸ h_OÄ Uj¢ h_OÄ Uj© h_OÄ Uj¬ h_OÄ Uh_OÄ h_OÄ mH sH h_OÄ h_OÄ 0J mH sH j h_OÄ Uj¯ h_OÄ U 5M O P º » ¼ è é ë ì V W X ‚ ƒ … † ‡ ÈÎ çÎ Ï 2Ï ^Ï }Ï ­Ï Ð â Z– d– Tž õíõâíÕíõíõÊíÕíõ¾õ¾õ¾õ¾õ¾õ¾õ¾õ h_OÄ j‰&

14. [PDF] Mangroves - Forest Trends

  • The enormous quantities of fish and invertebrates that live in these coastal waters, provide an abundance of food for monkeys, turtles, and aquatic birds ...

  • %PDF-1.6 %âãÏÓ 917 0 obj <> endobj 947 0 obj <>/Filter/FlateDecode/ID[<92D8C222DD104FA2E03212C1360D5F62>]/Index[917 35]/Info 916 0 R/Length 145/Prev 5284887/Root 918 0 R/Size 952/Type/XRef/W[1 3 1]>>stream hÞbbd```b``‘ ’ID2¾‘²• Rê'ˆ”̳ÁêeC@¤Ì0i/’lŸOƒØšó$ãë× ’u!ˆ|¾Dú’U “.ž ÿ0›cX—7HäÝ1[µ DúgDôy@liie$?×f30120«€ÝÌÀ%ÿ3üŸò À \«v endstream endobj startxref 0 %%EOF 951 0 obj <>stream hÞìV{L[Uÿν}\ c-ÅÁX逈y,"/Š‘Ý>6ªFl,ºé`Þ2FnA:$È{A§å90ˆ]”¤8™ÄllC¦,!f!Îédšh<ç¶(e²ü˓~¿s¾ï~¯ó;7½ (ü{¤ ÒÃàKÃD ÁÂÄCŒNÇ"b£a‹0ðÄ (ÄQÉ`˜åb¼‰"6!Œ,‚¸ƒg“…¥Dž$¦àŒ9—?NLtÈ­éãElØ4ӏ¢ìÐéÕT(€gá§q>~UʵðøžX1'? 'fÐ,¨‹PúÓqûîÈcïzº°!$Y/‹x •ÙååÐW-çÂâ7†Ú™G6ÐßCj¡–•ÜË혂aÖ« ’+ŠÙ¨,ô„ÎҁÅð]ö2h{©A{ÀŸP…«C$ç=¦Ü†^áU¯ƒO<´Db+“Ôé¶~Z5Ù©²à³¢9Ð008#{TDO©¯šÚBµœ*Qº“-kö¦Xñù鲀}ŠóŸFÆä-—íMú…ÝÔ¥JêõR ŒÜvFz¥ºw£]Ž1υhü•ÑY^QSèwÁ°RìàûAÊ­£šXŸë¢C×¢GaëW0ÇQ»èÉ tƒSg ^4òò Ùù^£äœ\Õô<§ôÛkµòå U֏ ¼•ç+»x3^Uš+:þ²âU³oÄzs#o;i3Û×юîÊoùVØo|ìrE@ð¹…çË¥ý5‰ÇÛÞl7j·5e©_­ µä¿ØQOŒ{=aA¤Ã³{”XŽŒcý‘qDžî—õü ŸH­[•­m™ñ¶1M“{lÉ¢u³hHuOm·lƝ¤}ºžr©W0žzvú=¬fÞ0nI Š£‡WìW@Árl÷Ú\¹7¦&øv 3•ÓRïU´/2æTÚ¡¶üÜÃYíc±=‰áuæùï1z:#!I6AóôjtîE›\“hméüx"=×R Ž¼Zä¹O!OýJZE¸’4’êârrVå_sš¬w?‹¹ºÔÙo¼ýŸÇ çë[:­Ä3«/Ե߽ÿ’ìc$hëq®Ëµd©mÝEÒL²‘ÞÎBüùãË·?ò)Ñ‘Í <Ïá? ‹%‘‰'ÿÕN}+còÖô,ëv$ÂÜêáÓ{ÀÙ¨–÷'|=þ-sžÞéI-Zâ\  €Tq$)R(Vu­w+æ*ÈÍðÿ-›ñ”Ð]|¸gJI]´2܊բÜG¶x[œh\›IqÄ-RíØ'~HͲN)ÍÿßçÿüûŒi—Aö\®„e‡poz6AÒÕêhj6Ä™êÀè·Zõ£¤”:w1#y÷—q†¡Ïè“

FAQs

These Forests Are Found On The Tidal Flats Of The Coastal Areas. They Are Good Sources Of Charcoals, Firewoods And Tannin.? ›

MangroveThese forests are found on the tidal flats of the coastal areas. They are good sources of charcoals, firewoods and tannin. The mangrove ecosystem is a nursery ground.

Which describes the term deforestation? ›

Deforestation is a process by which groves of living trees are killed and the land is converted to non-forest use. The term deforestation describes human-caused forest destruction.

What does deforestation do to the environment? ›

Trees absorb and store carbon dioxide. If forests are cleared, or even disturbed, they release carbon dioxide and other greenhouse gases. Forest loss and damage is the cause of around 10% of global warming. There's simply no way we can fight the climate crisis if we don't stop deforestation.

Why is deforestation important? ›

Deforestation and forest degradation are responsible for around 15% of all greenhouse gas emissions. These greenhouse gas emissions contribute to rising temperatures, changes in patterns of weather and water, and an increased frequency of extreme weather events.

References

Top Articles
Latest Posts
Article information

Author: Arline Emard IV

Last Updated: 21/09/2023

Views: 6354

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.